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Diapause is a major seasonal life-history strategy in insects that enables populations to
survive predictable unfavorable periods (e.g., winter cold, summer drought, or host
scarcity) through a hormonally regulated, preprogrammed arrest of development
and/or suppression of reproduction. This is not a “simple pause”; rather, it is a phase-
structured process encompassing induction, preparation, initiation, maintenance,
termination, and, in many cases, post-diapause quiescence. The mechanism is
accompanied by profound metabolic reorganization, energetic budgeting, and
enhanced stress tolerance. The decision to enter, maintain, or terminate diapause is
driven primarily by reliable environmental cues—especially photoperiod and
subsequently temperature—while nutritional and moisture-related factors can further
modulate this response in some systems. These inputs are translated into persistent
physiological states through neuroendocrine networks and key endocrine axes
involving juvenile hormone, ecdysteroids, and insulin/insulin-like signaling, thereby
redirecting resource allocation from growth and reproduction toward storage,
maintenance, and survival. This review also emphasizes the importance of
distinguishing diapause from quiescence and avoiding the frequent confusion between
them, because misclassification directly affects data interpretation and the prediction
of emergence timing. From a plant-protection and integrated pest management (IPM)
perspective, diapause governs the timing of damaging life stages and the width of
control-sensitive windows; therefore, diapause-informed phenology models, coupled
with field monitoring, can improve forecasting, sharpen intervention timing, and
support more realistic management decisions under climate change.
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Extended Abstract
Introduction

Diapause is a central seasonal life-history program in insects that allows populations to persist through
predictable adverse periods such as winter cold, summer drought, or transient host scarcity. It is not a brief
interruption, but an endogenous, genetically programmed alternative developmental and/or reproductive
trajectory: it is initiated in advance of unfavorable seasons, maintained by coordinated neuroendocrine—endocrine
control, and terminated so that development or reproduction can resume when conditions improve. The diapause
phenotype often expresses a coherent “diapause syndrome,” including suppression of morphogenesis or gonadal
maturation, reduced metabolic and respiratory demand, reallocation of resources toward storage and somatic
maintenance, behavioral shifts and microhabitat selection, and enhanced tolerance to stressors such as cold,
desiccation, and nutritional limitation. For herbivores and many agricultural pests, diapause therefore functions
not only as a survival strategy but also as a seasonal timing mechanism that aligns key life-cycle transitions
(adult emergence, oviposition, larval feeding) with narrow windows of host phenology and suitable
microclimate. This timing role is especially consequential in univoltine species and taxa with obligatory
diapause, where phenological mismatch can impose large fitness costs and shape outbreak dynamics.
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This review synthesizes how environmental information is translated into diapause decisions and phase-
specific physiology through neuroendocrine and endocrine signaling, and why mechanistic diapause biology is
increasingly relevant to plant protection and integrated pest management (IPM) under climate-driven variability
in thermal and moisture regimes. We integrate three complementary layers: (i) operational definitions and
diagnostics that reduce misclassification; (ii) a process-based view of diapause organized into ecophysiological
phases; and (iii) implications for phenology forecasting, monitoring design, and intervention timing.

A prerequisite for mechanistic inference and reliable forecasting is distinguishing diapause from other forms
of dormancy, particularly quiescence. Dormancy broadly denotes reversible reductions in activity or
development. Diapause is initiated within a species- and stage-specific sensitive window (decision point) in
response to seasonal “token cues”—most commonly photoperiod and temperature—and it can persist even if
short-term conditions temporarily improve. In contrast, quiescence is typically a short-term, exogenous arrest
that tracks immediate environmental constraints and resolves rapidly once constraints are removed. Conflating
these states is not merely semantic: it can bias experimental interpretation of endocrine regulation and introduce
systematic error into field predictions of emergence and vulnerability windows. A recurrent pitfall is post-
diapause quiescence, in which internal diapause constraints have been lifted but unfavorable external conditions
still prevent renewed activity. Robust diagnosis should therefore rely on convergent evidence—developmental
or reproductive status, standardized reversibility assays, metabolic or respiratory proxies, and
endocrine/molecular indicators where available—rather than immobility alone.

To move beyond binary thinking, we frame diapause as a dynamic trajectory organized into ecophysiological
phases: induction, preparation, initiation, maintenance, termination, and often post-diapause quiescence. This
phase structure explains why externally similar individuals can occupy distinct internal states, why termination
does not necessarily imply immediate emergence, and why rates of “diapause development” can differ among
environments and seasons. Importantly for applied entomology, susceptibility to control measures and the
reliability of phenology models can vary across phases, making phase awareness essential for translating biology
into decision support.

We then review the environmental inputs that shape diapause decisions and their translation into endocrine
outputs. Photoperiod—often encoded as night length—serves as a reliable seasonal calendar cue in many
temperate insects. Temperature acts both as a modifier of photoperiodic sensitivity and thresholds and as a direct
regulator of rate processes, including diapause development and termination Kinetics. In some systems,
thermoperiod—photoperiod interactions and the timing of thermal inputs within the light—dark cycle are decisive.
Nutritional cues and host quality can shift diapause thresholds, particularly in herbivores experiencing seasonal
changes in plant chemistry and in host—parasitoid networks where host condition covaries with season. Moisture
and humidity are less universal than photoperiod but can be critical in taxa adapted to dry seasons or in species
with drought-resistant diapausing eggs, where survival and hatching integrate combined temperature—humidity
histories.

Mechanistically, environmental information is integrated by neuroendocrine circuits that interact with
circadian and/or photoperiodic timing systems and are executed via endocrine axes. Across diverse insects,
diapause is commonly associated with modulation of juvenile hormone and ecdysteroid signaling,
reconfiguration of insulin/insulin-like signaling and FOXO activity, and coupling to nutrient-sensing pathways
such as TOR and AMPK. Together, these networks implement the core diapause logic: suppressing growth,
metamorphosis, or reproductive maturation; lowering metabolic demand; reallocating resources toward storage
and maintenance; and elevating cellular and organismal stress resistance.

From a plant-protection perspective, diapause is often the hidden driver behind failures of calendar-based
control. Many major pests overwinter or oversummer in stages that are difficult to target (e.g., soil-dwelling
larvae, diapausing pupae, sheltered adults) and synchronize emergence so that susceptible stages occur in brief
windows. Degree-day models remain essential, but they can be unreliable unless diapause processes are
represented explicitly. Diapause-informed phenology models that incorporate induction thresholds, temperature-
dependent diapause development, and termination kinetics can improve forecasts of spring timing, voltinism,
and pest—host synchrony under variable winters and increasing thermal fluctuations. Predictive performance can
be strengthened further by integrating mechanistic models with field monitoring (e.g., trap time series) using
cumulative-emergence approaches that translate weather histories into actionable estimates of stage occurrence
and population pressure.

In summary, diapause sits at the intersection of seasonal insect biology and IPM decision support. It
determines when pest populations reappear, how tightly risk windows are compressed, and how sensitive
population timing is to climate-driven shifts in temperature regimes and host phenology. By unifying cue
ecology, neuroendocrine—endocrine control, and phase-based diapause development, this review provides a
practical framework for accurate diagnosis, improved forecasting, and more targeted interventions in agricultural
and forest systems.
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