Overwintering and cold tolerance in pupae of large cabbage white, Pieris brassicae (Lepidoptera: Pieridae) in Iran

Document Type : Research Paper

Author

Assistant Professor, Institute of Agriculture, Iranian Research Organization for Science and Technology Tehran, Iran

Abstract

Abstract
Large cabbage white, Pieris brassicae, is a major pest of Brassicaceae family which overwinters as pupa on different shelters. In spite of increase in oilseed cropping area, there is little information available about its overwintering condition. In this study, overwintering pupae were collected during November 2012 to April 2013 and the diapause conditions, the whole body supercooling point (SCP), cold tolerance at subzero low temperatures (-10, -15, -20, -25 and -30°C) as well as lower lethal temperatures (Ltemp50 and Ltemp80) were investigated. The results showed that these pupae were in the main phase of diapause during three months of winter when the highest level of cold-hardiness capacity was observed. Also, the SCPs were significantly decreased and reached near to Ltemp50 at this time. Therefore, it could be concluded that these pupae use freeze avoidance strategy and there is a close linkage between diapause and cold-hardiness in this species, so, the highest level of cold tolerance could be expected during the deep phase of diapause in winter.
 
 
 

Keywords


  1.  

    1. Atapour, M. & Moharramipour, S. (2009). Changes of cold hardiness, supercooling capacity, and major cryoprotectants in overwintering larvae of Chilo suppressalis (Lepidoptera: Pyralidae). Environmental Entomology, 38, 260-265
    2. Bale, J. S. (1989). Cold hardiness and overwintering of insects. Agricultural Zoology Reviews, 3, 157-192.
    3. Danks, H. V. (2006). Insect adaptations to cold and changing environments. Canadian Entomologist, 138, 1-23.
    4. Denlinger, D. L. (1991). Relationship between cold hardiness and diapause, In: R. E. Lee and D. L. Denlinger, (Eds.) Insect at Low Temperature. Chapman and Hall, New York. pp. 174-198.
    5. 5.       Feltwell, J. (1982). Large White Butterfly, the Biology, Biochemistry and Physiology of Pieris brassicae (Linn.). The Hague, Netherlands. Dr. W. Junk Publishers, 535 pp.
    6. Fourche, J., Bosquet, G., Guillet, C. & Calvez, B. (1979). Cold acclimation during the wintering of diapausing pupae of Pieris brassicae. Comparative Biochemistry and Physiology, 62(A), 357-362.
    7. Hanif, M., Murai, T., Yoshida, H. & Tsumuki, H. (2000). Populational variation in diapause-induction and -termination of Helicoverpa armigera (Lepidoptera: Noctuidae).  Applied Entomology Zoology, 35(3), 357-360.
    8. Hazel, W.N. & West, D.A. (1983). The effect of larval photoperiod on pupal colour and diapause in swallowtail butterflies. Ecological Entomology, 8, 37-42.
    9. Jakobs R. (2014). Low temperature tolerance of adult Drosophila suzukii (Diptera: Drosophilidae). Electronic Thesis and Dissertation Repository. Western University. 93 pp.
    10. Jõgar, K., Metspalu, L., Hiiesaar, K., Luik, A., Martin, A.-J., Mänd, M., Jaaniso, R. & Kuusik, A. (2005). Physiology of diapause in pupae of Pieris brassicae L. (Lepidoptera: Pieridae). Agronomy Research, 3(1), 21-37.
    11. Kaneko, J. & Katagiri, C. (2006). A simple method to discriminate diapause from non-diapause pupae in large and small white butterflies, Pieris brassicae and P. rapae crucivora. Naturwissenschaften, 93(8), 393-396.
    12. Khanjani, M. (2006) Vegetable pests in Iran. Bu-Ali Sina University Publication, 2nd Edition. 467 pp. (in Persian)
    13. Kostal, V. (2006). Eco-physiological phases of insect diapause. Journal of Insect Physiology, 52, 113-127.
    14. Kristiansen, E., Pedersen, S., Ramlov, H. & Zachariassen, K. E. (1999). Antifreeze activity in the cerambycid beetle Rhagium inquisitor. Journal of Comparative Physiology B, 169, 5-60.
    15. Layne, J. R., Jr. & Kuharsky, D. K. (2000). Triggering of cryoprotectant synthesis in the woolly bear caterpillar (Pyrrharctia isabella Lepidoptera: Arctiidae). Journal of Experimental Zoology, 286, 367-371.
    16. Lee, R. E.  (2010). A primer on insect cold-tolerance. In: D. L. Denlinger, and R. E. Lee, (Eds.) Low Temperature Biology of Insects. 390 pp. Cambridge University Press. pp. 3-34.
    17. Lee, R. E. (1991). Principles of insect low temperature tolerance. In: Lee, R. E. and D. L. Denlinger, (Eds.) Insect at Low Temperature. New York, Chapman and Hall. pp. 17-46.
    18. Mehrkhou, F., Mahmoodi, L. & Mouavi, M. (2013). Nutritional indices parameters of large white butterfly Pieris brassicae (Lepidoptera: Pieridae) on different cabbage crops. African Journal of Agricultural Research, 8(25), 3294-3298.
    19. Molet, T. (2011). CPHST Pest Datasheet for Pieris brassicae. USDA-APHIS-PPQCPHST. 10 pp.
    20. Moreau, R., Olivier, D., Gourdoux, L. & Dutrieu, J. (1981) .Carbohydrate metabolism in Pieris brassicae L. (Lepidoptera); variations during normal and diapausing development. Comparative Biochemistry and Physiology, 68(B), 95-99.
    21. Powell S.J.L. & Bale, J. S. (2004). Cold shock injury and ecological costs of rapid cold hardening in the grain aphid Sitobion avenae (Hemiptera: Aphididae). Journal of Insect Physiology, 50(4), 277-84.
    22. Pullin, A. S. & Bale, J. S. (1989 a). Effects of ecdysone, juvenile hoemone and hemolymph transfer on cryoprotectant metabolism in diapausing and non-diapausing pupae of Pieris brassicae. Journal of Insect Physiology, 35(12), 911-918.
    23. Pullin, A. S. & Bale, J.S. (1989 b). Influence of diapause and temperature on cryoprotectant synthesis and cold hardiness in pupae of Pieris brassicae. Comparative Biochemistry and Physiology A, 94, 499-503.
    24. Saeidi, F., Moharramipour, S. & Barzegar, M. (2012). Seasonal patterns of cold hardiness and cryoprotectant profiles in Brevicoryne brassicae (Hemiptera: Aphididae). Environmental Entomology, 41, 1638-1643.
    25. Sinclair, B.J. (1999). Insect cold tolerance: how many kinds of frozen? European Journal of Entomology, 96, 157-164.
    26. Sinclair, B.J. (2001). Field ecology of freeze tolerance: interannual variation in cooling rates, freeze-thaw and thermal stress in the microhabitat of the alpine cockroach Celatoblatta quinquemaculata. Oikos, 93, 286-293.
    27. Singh Chahil, G. & Singh Kular, J. (2013). Biology of Pieris brassicae on different brassica species in the plants of Punjab. Journal of Plant Protection Research, 53(1), 53-59.
    28. Somme, L. & Velle, W. (1982). Polyol dehydrogenase in diapausing pupae of Pieris brassicae. Journal of Insect Physiology, 14, 135-143.
    29. SPSS Inc. (2009) PASW Statistics for Windows, Version 18.0. Chicago: SPSS Inc.
    30. Tanaka, K. & Tsubaki, Y. (1984). Seasonal dimorphism, growth and food consumption in the swallowtail butterfly Papilio xuthus L. Kontyu, 52, 390-398.
    31. Turnock, W. J. & Fields, P. G. (2005). Winter climates and cold hardiness in terrestrial insects. European Journal of Entomology, 102, 561-576.