Effect of different potato cultivars on nutritional indices and activity of some digestive enzymes of Leptinotarsa decemlineata (Col.: Chrysomelidae)

Document Type : Research Paper

Authors

1 Professor of Department of Plant Protection, Faculty of Agriculture and natural science, University of Mohaghegh Ardabili, Ardabil, Iran

2 Ph.D. Candidate of Department of Plant Protection, Faculty of Agriculture and natural science, University of Mohaghegh Ardabili, Ardabil, Iran

3 Ph.D. Candidate of Department of Plant Protection, Faculty of Agriculture and Natural Science, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Nutritional indices and digestive enzymatic activity of Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) was studied on eight potato cultivars including Agria, Dayfla, Ceasar, Labadia, Lady Rozeta, Lotta, Marfona, and Santae under laboratory conditions (25±1 °C, 65±5% R.H. and a photoperiod of 16L:8D h). L. decemlineata third instar larvae reared on cultivar Ceasar had the lowest values of consumed food and larval weight gain. Approximate digestibility values were highest and lowest on cultivars Agria and Marfona, respectively. The larvae reared on cultivar Santae showed the highest efficiency of conversion of digested food and efficiency of conversion of ingested food. Those larvae that fed on cultivar Agria had the highest relative consumption rate. In contrast, the larvae fed on Labadia and Ceasar cultivars had the lowest relative consumption rate. Furthermore, the larvae fed on Santae and Agria cultivars had the highest relative growth rate. Amylolytic activity in the 4th instar larvae was the lowest on Ceasar and Labadia and the highest activity was observed in the larvae fed on cultivars Lotta and Santae. The highest larval proteolytic activity was recorded in Agria, Santae and Lotta cultivars. According to the results, Labadia and Ceasar were the most unsuitable cultivars for feeding of L. decemlineata.

Keywords


  1. Abisgold, J. D. & Simpson, S. J. (1987). The physiology of compensation by locusts for changes in dietary protein. Journal of Experimental Biology, 129, 329-346.
  2. Bernfeld, P. (1955). Amylases, a and b. Methods Enzymology, 1, 149-158.
  3. Borzouei, E., Bandani, A. R. & Moslemi, A. (2013). Inhibitory effect of wheat seed cultivars extracts on digestive alpha-amylase activity of Colorado potato beetle. Plant Pests Research, 2(4), 15-26.
  4. Borzoui, E., Bandani, A. R. & Goldansaz, S. H. (2013). Effects of cereal seed protinaceous extracts on α-amylase and proteinase activity of salivary glands of Carob moth, Ectomyelois ceratoniac (Lepidoptera: pyralidae). Journal of Crop Protection, 2, 285-296.
  5. Borzoui, E., Naseri, B. & Namin, F. R. (2015). Different diets affecting biology and digestive physiology of the Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae). Journal of Stored Products Research, 62, 1-7.
  6. Chapman, R. F. (1998). The Insects: Structure and Function. Cambridge, UK: Cambridge University Press. pp: 788.
  7. Dent, D. (2000). Host plant resistance. pp: 123-179 in Dent, D. (Ed) Insect Pest Management. CABI Publishing, U.K.
  8. Elpidina, E. N., Vinokurov, K. S., Gromenko, V. A., Rudenskaya, Y. A., Dunaevsky, Y. E. & Zhuzhikov, D. P. (2001). Compartmentalization of proteinases and amylases in Nauphoeta cinerea midgut. Archives of Insect Biochemistry and Physiology, 48, 206-216.
  9. Esfandi, K., Kazemi, M. H. & Iranipour, S. (2012). Effects of four potato varieties on nutritional measures of Colorado potato beetle Leptinotarsa decemlineata (Say). Journal of Crops Entomology, 2(1), 25-34.
  10. Haynes, K. F. & Millar, J. G. (1998). Methods in chemical ecology. NewYork. pp: 406.
  11. Hilder, V. A., Gatehouse, A. M. R. & Boulter, D. (1992). Transgenic plants conferring insect tolerance: proteinase inhibitor approach. In: Transgenic Plants, Kung, S. and Wu, R., Vol 1. Academic Press, New York, pp: 317-338.
  12. House, H. L. (1969). Effects of different proportions of nutrients on insects. Entomologia Experimentalis et Applicata, 12, 651-669.
  13. Hwang, S. Y., Liu, C. H. & Shen, T. C. (2008). Effects of plant nutrient availability and host plant species on the performance of two Pieris butterflies (Lepidoptera: Pieridae). Biochemical Systematics and Ecology, 36, 505-513.
  14. Lazarevic, J. & Peric-Mataruga, V. (2003). Nutritive stress effects on growth and digestive physiology of Lymantria dispar larvae. Yugoslav Medical Biochemistry,22, 53-59.
  15. Lyytinen, A., Lindstrom, L., Mappes, J., Tiitto, R. J., Fasulati, S. R. & Tiilikhala, K. (2007). Variability in host plant chemistry: behavioral responses and life-history parameters of the Colorado potato beetle (Leptinotarsa decemlineata). Chemoecology, 17, 51-56.
  16. Mardani-Talaee, M., Zibaee, A., Nouri-Ganbalani, G., Rahimi, V. & Tajmiri, P. (2015). Effects of potato cultivars on some physiological processes of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 108(5), 2373-82.
  17. Martin, L. A. & Pulin, A. S. (2004). Host-plant specialization and habitat restriction in an endangered insect, Lycaena dispar batavus (Lepidoptera: Lycaenidae) I. Larval feeding and oviposition preferences. European Journal of Entomology, 101, 51-56.
  18. Nathan, S. S., Chung, P. G. & Murugan, K. (2005). Effect of biopesticides applied separately or together on nutritional indices of the rice leafolder Cnaphalocrocis medinalis. Phytoparasitica, 33, 187-195.
  19. Nation, J. L. (2001). Insect Physiology and Biochemistry. Boca Raton, Fla., CRC Press.
  20. Nouri-Ganbalani, G. (1985). Colorado PotatoBeetle. Tabriz University Publisher. pp: 185.
  21. Painter, R. H. (1951). Resisance of plant to insect. Annual Review of Entomology, 3, 267-290.
  22. Panda, N. & Khush, G. S. (1995). Host Plant Resistance to Insect. CAB International, pp: 431.
  23. Patankar, A. G., Giri, A. P., Harsulkar, A. M., Sainani, M. N., Deshpande, V. V., Ranjekar, P. K. & Gupta, V. S. (2001). Complexity in specificities and expression of Helicoverpa armigera gut proteases explains polyphagous nature of the insect pest. Insect Biochemistry and Molecular Biology, 31, 453-464.
  24. Pedigo, L. P. & Rice M. E. (2009). Entomology and Pest Management, 6th ed., Waveland Press, U.S.A, pp: 784.
  25. Rezaei, A. M. & Soltani, A. (2001). Potato Crop Cultivation. SID Publisher, 3th edition., pp: 179.
  26. Sarfraz, M., Dosdall, L. M. & Keddie, B. A. (2006). Diamondback moth-host plant interactions: Implications for pest management. Crop Protection, 25, 625-636.
  27. SAS (2003). A Guide to Statistical and Data Analysis. Version 9.1. SAS Institute, Cary.
  28. Scriber, J. M. & Slansky, F. (1981). The nutritional ecology of immature insects. Annual Review of Entomology, 26, 183-211.
  29. Smith, C. M., Khan, Z. R. & Pathak, M. D. (1994). Techniques for Evaluating Insect Resistance in Crop Plants. CRC Press. pp: 320.
  30. Sogbesan, A. O. & Ugwumba, A. A. A. (2008). Nutritional evaluation of termite (Macrotermes subhyalinus) meal as animal protein supplements in the diets of Heterobranchus longifilis (Valenciennes, 1840) fingerlings. Turkish Journal of Fisheries and Aquatic Sciences, 8, 149-157.
  31. Tisler, A. M. & Zehnder, G. W. (1990). Insecticide resistance in the Colorado potato beetle (Coleoptera: Chrysomelidae) on the eastern shore of Virginia. Journal of Economic Entomology, 83, 666-677.
  32. Waldbauer, G. P. (1968). The consumption and utilization of food by insects. Advances in Insect Physiology, 5, 229-288.
  33. Yasar, B. & Gungor, M. A. (2005). Determination of life table and biology of Colorado potato beetle, Leptinotarsa decemlineata Say (Col. Chrysomelidae), feeding on five different potato varieties in Turkey. Applied Entomology and Zoology, 40, 589-596.