Interaction of Pseudomonas fluorescens UTP100, wheat and Fusarium culmorum pathogenic mushroom cultivars

Document Type : Research Paper

Authors

1 Former M. Sc. Student, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

2 Associate Professor, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

3 Ph. D. Candidate, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

Abstract

In this study, the effects of Pseudomonas fluorescens UTP100 as an rhizobacteria was investigated, on interaction of three wheat cultivars (Falat, Marvdasht, and Niknejad) whit Fusarium culmorum as an causal of agent wheat foot and root rot. Treatment of seeds by the rhizobacterium caused significant decrease in the infection percentage, and improved germination and growth parameters in all three studied cultivars. The colonization rate of the rhizobacteria was significantly different among wheat cultivars, and the highest and lowest numbers of bacterial cells/ mg root dry weight were estimated in Falat and Niknejad cultivars, respectively. Infection of Falat and Marvdasht cultivars by F. culmorum led to decreased rate of bacterial colonization, while the number of bacterial cells increased in Niknejad cultivar following infection by the pathogen. The activity of phenylalanine ammonia lyase (PAL) enzyme, as an important enzyme involved in plant defense against plant pathogens, increased significantly when wheat cultivars were infected simultaneously by both P. fluorescens and F. culmorum compared to when separately treated by each of these agents. This may imply that the rhizobacterium induce systemic resistance to the invaded plant through activation of PAL enzyme.

Keywords


  1. Anderson, A. S. & Guerra, D. (1985). Responses of bean to root colonization with Pseudomonas putida in hydroponics’ system. Phytopathology, 75, 992- 995.
  2. Basha, A. S. & Chatterjee, S. C. (2007). Effect of PGPR on Sclerotinia sclerotiorum infection through elicitation of phenylalanine ammonia lyase in chickpea. Indian Phytopathology, 60, 313-316.
  3. Becker, J. S., Marios, E., Huguet, E. J.., Midland, S. L., Sims, J. J. &  Keen, N. T. (1998). Accumulation of salicylic acid and  4-hydroxybenzoic  acid  in  phloem  fluids  of  cucumber  during  systemic  acquired  resistance  is  preceded  by  a transient increase in phenylalanine ammonia-lyase activity in petioles and stems. Plant Physiology, 11, 231-238.
  4. Broukanloui, P., Behboudi, K., Tohidfar, M., Salehi, G. & Ahmadzadeh, M. (2013). Response of some important Iranian wheat cultivars to Fusarium culmorum under genetic diversity of indigenous bio-control agent fluorescent Pseudomonas spp. Australian Journal of Crop Science, 7, 1003-1009.
  5. Chekali, S., Gargouri, S., Berraies, S., Gharbi, M. S., Nicol, M. J. & Nasraoui, B. (2013). Impact of Fusarium foot and root rot on yield of cereals in Tunisia. Tunisian. Journal of Plant Protection, 8, 75-86.
  6. Chen, C., Belanger, R. R., Benhamou, N. & Paulitz, T. C. (2000). Defense enzymes induced in cucumber roots by treatment with plant growth promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiological and Molecular Plant Pathology, 56, 13-23.
  7. Chen, Z., Zheng, Z., Huang, J., Lai, Z. & Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signaling and Behavior, 4, 493-496.
  8. Chin-A-Woeng, T. F., Bloemberg, G. & Lugtenberg, B. J. (1998). Biocontrol by Phenazine-1-carboxamide-Producing Pseudomonas chlororaphis PCL1391 of Tomato Root Rot Caused by Fusarium oxysporum f. sp. radicis-lycopersici. The American Phytopathological Society, 11, 1069-107.
  9. Davat, S., Lebreton, K., Gazengel, K., Boutin, M., Guillerm-Erckelboudt, A. Y. & Sarniguet, A. (2011). The biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots. Molecular Plant Pathology, 12, 839-854.
  10. Diby, P. & Sharma, Y. R. (2005). Pseudomonas fluorescens mediated systematic resistance in black pepper (Piper nigrum L.) is driven through an elevated synthesis of defense enzymes. Archives of Phytopathology and Plant Protection, 38, 139-149.
  11. FAO. (2012). FAOSTAT Database on Agriculture, Food and Agriculture Organization of the United Nations.
  12. Haj Malek Zanjani, M., Ahmadzadeh, M. Sharifi Tehrani, A., Behboodi, K. & Saberi riseh, R. (2011). Effects of Rhizoctonia solani on Root Colonization of Canola by Pseudomonas fluorescens Strain UTPF86. Iranian Journal of Plant Protection Science, 42(1), 163-170.
  13. Hammerschmidt, R., Nuckles, E. M. & Kuc, J. (1982). Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiological Plant Pathology, 20, 73-82.
  14. Hao, Z. N., Wang, L. P. & Tao, R. X. (2009). Expression patterns of defense genes and antioxidant defense responses in a rice variety that is resistant to leaf blast but susceptible to neck blast. Physiological and Molecular Plant Pathology, 74, 167-174.
  15. Hosseinzadeh Foumesh, H., Behboodi, K. & Ahmadzadeh, M. (2013). Induction of PAL and proxidase in interaction of some wheat cultivars and Pseudomonas fluorescens UTP100 against Fusarium culmorum, the causal agent of common root rot. M. sc. Thesis. Plant Protection Department College of Agriculture and Natural Resources, University of Tehran, Karaj.
  16. Keel, C., Weller, D. M., Natsch, A., Défago, G., Cook, R. J. & Thomashow L. S. (1996). Conservation of the 2, 4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Applied and Environmental Microbiology, 62, 552-563.
  17. Mansouri, B., Ravanlou, E., Nourolahi, Kh., Azadbakht, N., Jafari, H. & Ghalandari, M. (2002). Wheat common root and crown rot in Azarbayjan, Ilam, Lorestan, Zanjan and Markazi. In: Proceedings of Iranian plant protection congress, Volume, 2. Kermanshah, p. 41.
  18. Mazzola, M. & Gu, Y. H. (2002). Wheat genotype-specific induction of soil microbial communities suppressive to disease incited by Rhizoctonia solani Anastomosis Group (AG)-5 and AG-8. Phytopathology, 92, 1300-1307.
  19. Mazzola, M., Funnell, D. L. & Raaijmakers, J. M. (‎2004). Wheat cultivar-specific selection of 2,4-Diacetylphloroglucinol-P roducing fluorescent Pseudomonas species from resident soil populations. Microbial Ecology, 48, 338-348.
  20. Meyer, D. M. (2000). Pyoverdins: Pigments siderophores and potential taxanomic markers of fluorescent pseudomonas species. Archives of Microbiology, 174, 135-142.
  21. Moya-Elizondo, E. A., Hogg, B. J. J. A. C. & Dyer, A. T. (2011). Distribution and prevalence of Fusarium crown rot and common root rot pathogens of wheat in Montana. Plant Disease, 95, 1099-1108.
  22. Nakkeeran, S., Fernando, W. G. D. & Siddiqui Z. A. (2005). Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui Z.A. (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp. 257-296.
  23. Newman, E, I. (1966). A method of estimating the total length of root in a sample. Journal of Applied Ecology, 3, 139-145.
  24. Notz, R., Maurhofer, M., Dubach, H., Haas, D. & Défago, G. (2002). Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Applied and Environmental Microbiology, 68, 2229-2235.
  25. Pal, K. K., Tilak, B. R., Saxena, A. K., Dey, R. & singh, C. S. (2001). Suppression of maize root disease caused by Macrophomina phaseoli, Fusarium moniliform and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiology Research, 156, 209-223.
  26. Pallas, J., Paiva, N., Lamb, C. & Dixon, R. (1996). Tobacco plants epigenetically suppressed in  phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant Journal, 10, 281-293.
  27. Parr, A. J. & Bolwell, G. P. (2000). Phenols in the plant and in man. The potential for possible  nutritional  enhancement  of  the  diet  by  modifying  the  phenols  content  or profile. Journal of Science Food Agriculture, 80, 985-1012.
  28. Patten, C. L. & Glick, B. R. (2002) .Role  of  pseudomonas  putida  indole  acetic  acid  in  development  of hostplant root system. Applied Environmental Microbiology, 3795-3801.
  29. Rashid, M., Khalil, S., Ayub, N., Alam, S. & Latif, F. (2004). Organic acids productions solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pakistan Journal of Biological Sciences, 7, 187-196.
  30. Ross, W. W. & Sederoff, R.  R. (1992). Phenylalanine ammonia lyase from loblolly Pin:  Purification of the enzyme and isolation of complementary DNA clone. Plant Physiology, 98, 380-386.
  31. Scherm, B., Balmas, V., Spanu, F. Pani, G., Delogu, G., Pasquali, M. & Micheli, Q. (2013). Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Molecular Plant Pathology, 14, 323-341.
  32. Schippers, B., Bakker, A. W., Bakker, P. A. H. M. & Vanpeer, R. (1990). Beneficial and deleterious effects of HCN-production pseudomonads on rhizosphere interaction. Plant and Soil, 129, 75-83.
  33. Shoresh, M., Harman, G. E. & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21-43.
  34. Smiley, R. W.  & Yan, H. (2009). Variability of fusarium crown rot tolerances among cultivars of spring and winter wheat. Plant Disease, 93, 954-961.
  35. Thomashow, L. S. & Weller, D. M. (1996). Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. Plant-Microbe Interaction, vol.1 (Stacey, G. & Keen, N, eds), pp.187-235. Chapman & Hall, New York, NY.
  36. Tinlin, R. D. (1997). Multiple infection of subcrown internode of wheat (Triticum aesativum) by common root rot fungi. Canadian Journal of Botany, 55, 30-34.
  37. Vanitha, S. C. & Umesha, S. (2011) Pseudomonas fluorescens mediated systemic resistance in tomatois driven through an elevated synthesis of defense enzymes. Biologia Plantarum, 55, 317-322.
  38. Verhagen,A. A. E.,  Janvier, A.,  Leuthner, S. R.,  Andrews, B.,  Lagatta,  J., Bos, A. F. &  Meadow, W. (2010). Categorizing neonatal deaths: A cross-Cultural study in the United States, Canada, and the Netherlands. Journal of Pediatrics, 156, 33-7. 
  39. Vidhyasekaran, P., Rabindran, R., Muthamilan, M., Nayar, K., Rajappa, K., Subramanian, N. & Vasumathi, K. (1997). Development of powder formulation of Pseudomonas fluorescens for control of rice blast. Plant Pathology, 46, 291-297.
  40. Vincent, M. N., Harrison, L. A., Brackin, J., Kovacevich, P., Mukerji, P., Weller, D. M. & Pierson, E. A. (1991). Genetic analysis of the antifungal activity of a soil-borne Pseudomonas aureofacience strain. Applied and Environmental Microbiology, 57, 2928-2934.
  41. Wachowska, U., Kucharska, K., Jedryczka, M. & Lobik, N. (2013) Microorganisms as biological control agents against Fusarium pathogens in winter wheat. Polish Journal of Environmental Studies, 22, 591-597.
  42. Wagacha, J. M. & Muthombi, J. W. (2007) Fusarium culmorum: Infection process, mechanisms of mycotoxin production and their role in pathogenesis in wheat. Crop Protection, 26, 877-885.
  43. Weller, D. M. & Cook, R. J. (1986). Increased growth of wheat by seed treatment with Fluorescent Pseudomonas and implication of pythum control. Canadian Journal of Plant Pathology, 8, 328-334.
  44. Wildermuth, M. C., Dewdney, J., Wu, G. & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature, 417-571.