Identification of volatile organic compounds of pistachio trees and their role in attraction of common pistachio psyllid, Agonoscena pistaciae (Hemiptera: Aphalaridae)

Document Type : Research Paper

Authors

1 Ph. D. Candidate, Department of Plant Protection, College of Agricultural Science and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

2 Professor, Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

3 Associate Professor, Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

Abstract

The common pistachio psyllid (CPP: Agonoscena pistaciae) is the key pest of pistachio orchards in Iran. At the moment, insecticides despite their known adverse effects on human health and environment, are the only and the last option for controlling CPP in most cases. However, selection pressure of insecticides has resulted in establishing highly resistant populations of CPP. Nowadays, volatile organic compounds (VOCs) of plants presenting opportunities for sustainable plant protection. In this regard, VOCs of pistachio trees (Ohadi and Kaleh ghoochi cultivars) were collected by headspace method in the pistachio orchards and identified chromatographically (GC–MS). VOCs, including monoterpenes, esters, acids, alcohols, aldehydes, and aromatics, were identified in both cultivars, numbering 43 in the Ohadi cultivar and 37 in the Kaleh ghoochi. The quantitatively dominant constituents were (E)-β-Ocimene (32.5%), limonene (14.8%) and methyl benzoate (12.1%) in the Ohadi cultivar and (E)-β-Ocimene (29.2%), limonene (20.1%) and α-Thujene (6.6%) in the Kaleh ghoochi. To study whether olfactory cues elicit responses in adult CPP, the odor of pistachio leaves (Ohadi cultivar) were offered in a Y-tube olfactometer to field-collected populations. Significant positive responses to volatiles of leaves were found in both males (P<0.03) and females (P<0.001). These data may be useful in semiochemically-based management strategies in the pistachio orchards such as mass trapping or deter of CPP or attraction of natural enemies.

Keywords


  1. Alizadeh, A., Talebi, K., Hosseininaveh, V. & Ghadamyari, M. (2011). Metabolic resistance mechanisms to phosalone in the common pistachio psyllid, Agonoscena pistaciae (Hem.: Psyllidae). Pesticide Biochemistry and Physiology, 101, 59-64.
  2. Amirteimoori, S. & Chizari, A. H. (2008). An investigation of comparative advantage of pistachio production and exports in Iran. Journal of Agricultural Science and Technology, 10, 395-403.
  3. Amirzade, N., Izadi, H., Jalali, M. A. & Zohdi, H. (2014). Evaluation of three neonicotinoid insecticides against the common pistachio psylla, Agonoscena pistaciae, and its natural enemies. Journal of Insect Science, 14, 1-8.
  4. Ansebo, L., Coracini, M., Bengtsson, M., Liblikas, I., Ramírez, M., Borg-Karlson, a-K., Tasin, M. & Witzgall, P. (2004). Antennal and behavioural response of codling moth Cydia pomonella to plant volatiles. Journal of Applied Entomology, 128, 488-493.
  5. Beck, J. J., Light, D. M. & Gee, W. S. (2014a). Electrophysiological responses of male and female Amyelois transitella antennae to pistachio and almond host plant volatiles. Entomologia Experimentalis et Applicata, 153, 217-230.
  6. Beck, J. J., Mahoney, N. E., Cook, D., Gee, W. S., Baig, N. & Higbee, B. S. (2014b). Comparison of the volatile emission profiles of ground almond and pistachio mummies: Part 1 - Addressing a gap in knowledge of current attractants for navel orange worm. Phytochemistry Letters, 9, 102-106.
  7. Beck, J. J., Mahoney, N. E., Higbee, B. S., Gee, W. S., Baig, N. & Griffith, C. M. (2014c). Semiochemicals to monitor insect pests-future opportunities for an effective host plant volatile blend to attract navel orangeworm in pistachio orchards. ACS Symposium Series, 1172, 191-210.
  8. Bengtsson, M., Bäckman, A. C., Liblikas, I., Ramirez, M. I., Borg-Karlson, A. K., Ansebo, L., Anderson, P., Löfqvist, J. & Witzgall, P. (2001). Plant odor analysis of apple: Antennal response of codling moth females to apple volatiles during phenological development. Journal of Agricultural and Food Chemistry, 49, 3736-3741.
  9. Borrero-Echeverry, F., Becher, P. G., Birgersson, G., Bengtsson, M., Witzgall, P. & Saveer, A. M. (2015). Flight attraction of Spodoptera littoralis (Lepidoptera, Noctuidae) to cotton headspace and synthetic volatile blends. Frontiers in Ecology and Evolution, 3, 1-7.
  10. Chahed, T., Dhifi, W., Hosni, K., Msaada, K., Kchouk, M. E. & Marzouk, B. (2008). Composition of Tunisian pistachio hull essential oil during fruit formation and ripening. Journal of Essential Oil Research, 20, 122-125.
  11. Diaz-Montano, J. & Trumble, J. T. (2013). Behavioral responses of the potato psyllid (Hemiptera: Triozidae) to volatiles from dimethyl disulfide and plant essential oils. Journal of Insect Behavior, 26(3), 336-351.
  12. Dicke, M. & Baldwin, I. T. (2010). The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends in Plant Science, 15(3), 167-175.
  13. Dudareva, N., Klempien, A., Muhlemann, J. K. & Kaplan, I. (2013). Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 198, 16-32.
  14. Engelberth, J., Alborn, H. T., Schmelz, E. & Tumlinson, J. H. (2004). Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences of the United States of America, 101, 1781-1785.
  15. Food and Agriculture Organization. (2016). FAOSTAT.  Retrieved February 2, 2018, from http://www.fao.org/faostat.
  16. Fraser, A. N. N. M., Mechaber, W. L. & Hildebrand, J. G. (2003). Electroantennographic and behavioral responses of the sphinx moth Manduca sexta to host plant headspace volatiles. Journal of Chemical Ecology, 29. 1813-1833.
  17. Georgiadou, M., Gardeli, C., Komaitis, M., Tsitsigiannis, D.I., Paplomatas, E. J., Sotirakoglou, K. & Yanniotis, S. (2015). Volatile profiles of healthy and aflatoxin contaminated pistachios. Food Research International, 74, 89-96.
  18. Gershenzon, J. (2000). Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiology, 122, 205-214.
  19. Grison-Pigé, L., Hossaert-McKey, M., Greeff, J. M. & Bessière, J. M. (2002). Fig volatile compounds - A first comparative study. Phytochemistry, 61, 61-71.
  20. Guédot, C., Millar, J. G., Horton, D. R. & Landolt, P. J. (2010). Identification of a sex attractant pheromone for male winterform pear psylla, Cacopsylla pyricola. Journal of Chemical Ecology, 35, 1437-1447.
  21. Holzinger, R., Rottenberger, S., Crutzen, P. J. & Kesselmeier, J. (2000). Emissions of volatile organic compounds from Quercus ilex L. measured by proton transfer reaction mass spectrometry under different environmental conditions. Journal of Geophysical Research: Atmospheres, 105, 573-580.
  22. Horton, D. R. & Landolt, P. J. (2007). Attraction of male pear psylla, Cacopsylla pyricola, to female-infested pear shoots. Entomologia Experimentalis et Applicata, 123, 177-183.
  23. James, D. G. (2003). Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environmental Entomology, 32, 977-982.
  24. Knight, A. L., Light, D. M. & Trimble, R. M. (2011). Identifying (E)-4,8-dimethyl-1,3,7-nonatriene plus acetic acid as a new lure for male and female codling moth (Lepidoptera: Tortricidae). Environmental Entomology, 40, 420-430.
  25. Ling, B., Yang, X., Li, R. & Wang, S. (2016). Physicochemical properties, volatile compounds, and oxidative stability of cold pressed kernel oils from raw and roasted pistachio (Pistacia vera L. Var Kerman). European Journal of Lipid Science and Technology, 118, 1368-1379.
  26. Loughrin, J. N., Hamilton-Kemp, T. R., Andersen, R. A. & Hildebrand, D. F. (1990). Volatiles from flowers of Nicotiana sylvestris, N. otophora and Malus  domestica: headspace components and day/night changes in their relative concentrations. Phytochemistry, 29, 2473-2477.
  27. Mehrnejad, M. R. & Copland, M. J. W. (2005). The seasonal forms and reproductive potential of the common pistachio psylla, Agonoscena pistaciae (Hem., Psylloidea). Journal of Applied Entomology, 129(6), 342-346.
  28. Neshat, A. & Zeinadini, A. (2014). Investigation effect of the developing salinity water on the quality of irrigation water and soils physicochemical characteristics of pistachio cultivation of Sirjan area. Journal of Environmental Science and Technology, 15(2), 13-22. (in Farsi)
  29. Nissinen, A., Ibrahim, M., Kainulainen, P., Tiilikkala, K. & Holopaine, J. K. (2005). Influence of carrot psyllid (Trioza apicalis) feeding or exogenous limonene or methyl jasmonate treatment on composition of carrot (Daucus carota) leaf essential oil and headspace volatiles. Journal of Agricultural and Food Chemistry, 53, 8631-8638.
  30. Pare, P. W. & Tumlinson, J. H. (1997). De Novo Biosynthesis of Volatiles Induced by Insect Herbivory in Cotton Plants. Plant Physiology, 114, 1161-1167.
  31. Patt, J. M. & Sétamou, M. (2010). Responses of the Asian citrus psyllid to volatiles emitted by the flushing shoots of its rutaceous host plants. Environmental Entomology, 39, 618-624.
  32. Pickett, J. A. & Khan, Z. R. (2016). Plant volatile-mediated signalling and its application in agriculture: successes and challenges. New Phytologist, 212, 856-870.
  33. Robbins, P. S., Alessandro, R. T., Stelinski, L. L. & Lapointe, S. L. (2012). Volatile profiles of young leaves of Rutaceae spp. varying in susceptibility to the Asian citrus psyllid (Hemiptera: Psyllidae). Florida Entomologist, 95, 774-776.
  34. Roitman, J. N., Merrill, G. B. & Beck, J. J. (2011). Survey of ex situ fruit and leaf volatiles from several Pistacia cultivars grown in California. Journal of the Science of Food and Agriculture, 91, 934-942.
  35. Rouhani, M. & Samih, M. A. (2013). The effect of once spring application of calcium, zinc and urea on population density of common pistachio psylla Agonoscena pistaciae (Hem: Psyllidae) in pistachio orchards of Rafsanjan. Plant Pests Research, 2(4), 35-44.
  36. Scutareanu, P., Bruin, J., Posthumus, M. A. & Drukker, B. (2003). Constitutive and herbivore‐induced volatiles in pear, alder and hawthorn trees. Chemoecology, 13(2), 63-74.
  37. Scutareanu, P., Drukker, B., Bruin, J., Posthumus, M. A. & Sabelis, M. W. (1997). Volatiles from Psylla-infested pear trees and their possible involvement in attraction of anthocorid predators. Journal of Chemical Ecology, 23, 2241-2260.
  38. Smart, L. E. & Blight, M. M. (1997). Field discrimination of oilseed rape, Brassica napus volatiles by cabbage seed weevil, Ceutorhynchus assimilisJournal of Chemical Ecology, 23, 2555-2567.
  39. Sonmezdag, A. S., Kelebek, H. & Selli, S. (2017). Characterization and comparative evaluation of volatile, phenolic and antioxidant properties of pistachio (Pistacia vera L.) hull. Journal of Essential Oil Research, 29, 262-270.
  40. Sonmezdag, A. S., Kelebek, H. & Selli, S. (2018). Pistachio oil (Pistacia vera L. cv. Uzun): Characterization of key odorants in a representative aromatic extract by GC-MS-olfactometry and phenolic profile by LC-ESI-MS/MS. Food Chemistry, 240, 24-31.
  41. Stewart-Jones, A. & Poppy, G. M. (2006). Comparison of glass vessels and plastic bags for enclosing living plant parts for headspace analysis. Journal of Chemical Ecology, 32, 845-864.
  42. Talebpour, Z., Najafi, S., Sonboli, A., Firozy, M. & Khosroshahi, M. (2013). Comparison of Chemical Compositions of the Tanacetum sonbolii essential oils using head space sorptive extraction and hydrodistillation methods. Journal of Medicinal Plants, 4(48), 150-159.
  43. Tasin, M., Anfora, G., Ioriatti, C., Carlin, S., Cristofaro, A. De, Schmidt, S., Bengtsson, M., Versini, G. & Witzgall, P. (2005). Antennal and behavioral responses of grapevine moth Lobesia botrana females to volatiles from grapevine. Journal of Chemical Ecology, 31, 77-87.
  44. Tholl, D., Boland, W., Hansel, A., Loreto, F., Röse, U. S. R. & Schnitzler, J. P. (2006). Practical approaches to plant volatile analysis. Plant Journal, 45, 540-560.
  45. Zaka, S. M., Zeng, X. N., Holford, P. & Beattie, G. A. C. (2010). Repellent effect of guava leaf volatiles on settlement of adults of citrus psylla, Diaphorina citri Kuwayama, on citrus. Insect Science, 17(1), 39-45.
  46. Zhang, Z. Q., Sun, X. L., Xin, Z. J., Luo, Z. X., Gao, Y., Bian, L. & Chen, Z. M. (2013). Identification and field evaluation of non-host volatiles disturbing host location by the tea geometrid, Ectropis obliquaJournal of Chemical Ecology, 39, 1284-1296.