Introduction, mechanisms of action and genomic description in plant probiotic ‎bacterium Bacillus velezensis

Document Type : Research Paper

Authors

1 Ph. D. Candidate, Department of Plant Protection, College of Agirculture & Natural Resources, University ‎of Tehran, Karaj, Iran

2 Associate Professor, Department of Plant Protection, College of Agirculture & Natural Resources, University of Tehran, Karaj, Iran

3 Assistant Professor, Faculty of Agriculture, Razi University, Kermanshah, Iran

4 Associate Professor, Department of Microbiology, Cornell University, Ithaca, New York, USA

Abstract

Bacillus velezensis is one of the plant probiotic bacteria that has been recently considered as one of the most powerful biocontrol agents. The purpose of this study is to introduce and investigate some of the characteristics of B. velezensis bacterium, which has been isolated from tomato rhizosphere in Kermanshah Province. In this study, B. velezensis increased shoot length, root length and dry weight of tomato plants by 78.86%, 56.68%, and 45.83%, respectively in comparison to uninoculated control; it also promoted seed germination percentage and seed vigor index under in vitro condition. Furthermore, some of the biocontrol properties of this strain such as the production of siderophore, HCN, and indole-3-acetic acid and solubilization of phosphate were evaluated. Biocontrol bioassay of this strain against Fusarium oxysporum f.sp. lycopersici under in vitro condition revealed that this strain can inhibit the mycelial growth in both dual culture and volatile compounds methods about 83% and 58%, respectively. The pot experiment results showed that B. velezensis caused a reduction in disease symptoms up to 87%. Finally, the whole genome sequence of this strain was identified using Illumina HiSeq2500 technology. Then genomic locations and coding sequences were identified in RAST database. In addition, the sequencing data were compared with existing sequences in the NCBI database. Results showed that this isolate has high similarity to (%100) B. velezensis. The genome of this isolate contains 4132868bp and 4329 CDs. The results suggest that B. velezensis has a good potential to be introduced as a plant probiotic bacterium.

Keywords


  1. Ahmad, F., Ahmad, I. & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, (163), 173-181.
  2. Alström, S. & Burns, R. G. (1989). Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biology and Fertility of Ssoils, (7), 2323-238.
  3. Ameen, A., Deravel, J., Krier, F., Béchet, M. & Ongena, M. (2017). Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42. Environmental Science and Pollution Research, (10), 1007-1018.
  4. Amini, K. (2009). Physiological race of Fusarium oxysporum f. sp. lycopersici in Kurdistan Province of Iran and reaction of some tomato cultivars to race 1 of pathogen. Plant Pathology, (8), 68-73.
  5. Aragunde, N. C., Graziano, M. & Lamattia, L. (2004). Nitric oxide plays a central role in determining lateral root development in tomato. Planta, (218), 900-905.
  6. Arguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B. & Fickers, P. (2009). Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factories, (8), 63-73.
  7. Baker, K. F. & Cook, R. J. (1974). Biological control of plant pathogens. American Phytopathology Society. St. Paul, Minn. 433pp.
  8. BioHPC cloud [computer software]. (2017). BioHPC lab software from https://biohpc.cornell.edu/lab/lab.aspx
  9. Borriss, R., Chen, X.H., Rueckert, C., Blom, J., Becker, A., Baumgarth, B., Fan, B.,Pukall, R., Schumann, P., Sproer, C., Junge, H., Vater, J., Puhler, A. & Klenk, H.P. (2011). Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7Tand FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. International Journal of Systemic and Evolutionary, (61), 1786-1801.
  10. Cai, X., Li, H., Xue, Y. & Liu, Ch. (2013). Study of endophytic Bacillus amyloliquefaciens CC09 and its antifungal cyclic lipopeptides. Journal of Applied Biology and Biothechnology, (1), 1-5.
  11. Cai, X., Kang, X., Xi, H., Liu, Ch. & Xue, Y. (2016). Complete genome sequence of the endophytic biocontrol strain Bacillus velezensis CC09. Genome Announcements, 4(5), 1016-1048.
  12. Cai, X., Liu, Ch., Wang, B. T. & Xue, R. Y. (2017). Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease. Microbiological Research, (196), 89-94
  13. Chen, X., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I.,Morgenstern, B., Voss, B., Hess, W., Reva, O., Junge, H., Voigt, B., Jungblut, P.,Vater, J., Süssmuth, R., Liesegang, H., Strittmatter, A., Gottschalk, G. & Borriss, R. (2007). Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology, (25), 1007-1014.
  14. Chen, Y., Yan, F., Chai, Y., Clardy, J., Kolter, R., Guo, J. & Losick, R. (2012a). Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes meditating biofilm formation. Environmental Microbiology, (15), 848- 864.
  15. Chen, Y., Yan, F., Chai, Y., Clardy, J., Losick, R. & Guo, J. (2012b). A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the root of tomato plant. Molecular Microbiology, (85), 418-430.
  16. Dunlap, C., Kim, S., Kwon, S. & Rooney, A. (2016). Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. International Journal of Systemic Evolutionary Microbiology, (66), 1212-1217.
  17. Fernandez Scavino, A. & Pedraza, R.O. (2013). The role of siderophores in plant growth-promoting bacteria. Bacteria in Agrobiology: Crop Productivity, 265-285.
  18. Fiddaman, P. J. & Rossall, S. (1993). The production of antifungal volatiles by Bacillus subtilis. Journal of Applied Bacteriology, (74), 395-405.
  19. Fira, D., Dimkić, I., Berić, T., Lozo, J. & Stanković, S. (2018). Biological control of plant pathogens by Bacillus species. Journal of Biotechnology, (285), 44-55.
  20. Gutiérrez-Luna, F. M., López-Bucio, J., Altamirano-Hernández, J., Valencia-Cantero, E., Homero, R. C. & Macías-Rodríguez, L. (2010). Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis, 51, 75-83.
  21. Hagedorn, C., Gould, W. D. & Bardinelli, T. R. (1989). Rhizobacteria of cotton and their repression of seedling disease pathogens. Applied and Environmental Microbiology, (55), 2793-2797.
  22. Hampton, J. G. & Tekrony, D. M. (1995). Handbook of vigour test methods. International. Seed Testing Association, Zurich, Switzerland.
  23. Honda, N., Hirai, M., Ano, T. & Shoda, M. (1998). Antifungal effect of a heterotrophic nitrifier Alcaligenes faecalis. Biotechnology Letters, (20) 703-705.
  24. Kamal, A., Elyousr, A. & Mohamed, H. M. (2009). Biological control of Fusarium wilt in tomato by Plant Growth Promoting Yeast and Rhizobacteria. Plant Pathology Journal, 25(2), 199-204.
  25. Kang, X., Zhang, W., Cai, X., Zhu, T., Xue, Y. & Liu, Ch. (2018). Bacillus velezensis CC09: A Potential ‘Vaccine’ for controlling wheat diseases. Mulecular Plant- Microb Interaction, (31), 623-632.
  26. Liu, Z., Budiharjo, A., Wang, P., Shi, H., Fang, J., Borriss, R., Zhang, K. & Huang, X. (2013). The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. Applied Microbiology and Biotechnology, (97), 10081-10090.
  27. Liu, G., Kong, Y., Fan, Y., Geng, D. P. & Sun, M. (2017). Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. Journal of Biotechnology, (249), 20-24.
  28. Lorraine, D., Cotter, C. & Paul, R. (2013). The two peptide lantibiotic lacticin 3147 acts synergistically with polymyxin to inhibit gram negative bacteria. BMC Microbiology, 13(3), 212-220.
  29. Maurhofer, M., Keel, C., Haas, D. & Defago, G. (1995). Influnce of plant species on disease suppression by Pseudomonas fluorescens strain CHA0 with enhanced antibiotic production. Plant Pathology, (44), 40-50.
  30. Meng, Q., Jiang, H. & Hao, J. (2016). Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biological Control, (98), 18-26.
  31. Palazzini, H. J., Dunlap, Ch. A., Bowman, M. J. & Chulze, S. N. (2016). Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles. Microbiological Research, (192), 30-36.
  32. Pan, H., Li, L., Q. & Hu, J. Ch. (2017). The complete genome sequence of Bacillus velezensis 9912D reveals its biocontrol mechanism as a novel commercial biological fungicide agent. Journal of Biotechnology, (247), 25-28.
  33. Patten, C. L. & Glick, B. R. (2002). Role of Pseudomonas putida indole- acetic acid in development of the host plant root system. Applied and Environmental Microbiology, (68), 3795-3801.
  34. Pikovskaya, R. I. (1948). Mobilization of phosphorus and soil in connection with the vital activity of some microbial species. Mikrobiologii, (17), 362-70.
  35. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W. & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceeding National Academy of Sciences U.S.A, (100), 4927-4932.
  36. Ryu, C. M., Allen, R., Melo, I. S. & Pare, P. W. (2007). Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta, (226), 839-851.
  37. Saha, M., Sarkar, S., Sarkar, B., Sharma, B. K., Bhattacharjee, S. & Tribedi, P. (2016). Microbial siderophores and their potential applications: a review. Environmental Science and Pollution Research, 23 (3), 245-253. (in Farsi)
  38. Schaad, N. W., Jones, J. B. & Chun, W. (2001). Laboratory Guide for identification of plant pathogenic bacteria.third edition.The American phytopathological society, Minnesota USA.
  39. Sharifi, R., Alizadeh, H., Ahmadzade, M. & Rasouli Sadaghiani, M. (2017). Investigation of different methods in siderophore measurement in indigenous fluorescent pseudomonads. Biological Journal of Microorganism, 6(21), 97-106.
  40. Sharifi, R. & Ryu, M. C. (2018a). Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Annals of Botany, (20), 1-10.
  41. Sharifi, R. & Ryu, M. C. (2018b). Sniffing bacterial volatile compounds for healthier plants. Current Opinion in Plant Biology, (44), 88-97.
  42. Wang, L. T., Lee, F. L., Tai, Ch. J. & Yokota, A. (2007). Reclassification of Bacillus axarquiensis Ruiz-Garcı´a et al. 2005 and Bacillus malacitensis Ruiz-Garcı´a et al. 2005 as later heterotypic synonyms of Bacillus mojavensis Roberts et al. 1994. International Journal of Systematic and Evolutionary Microbiology, (57), 1663-1667.
  43. Weber, T., Blin, K., Duddela, S., Krug, D., Kim, H. U., Bruccoleri, R., Lee, S. Y., Fischbach, M. A., Muller, R., Wohlleben, W., Breitling, R., Takano, E. & Medema,M. H. (2015). antiSMASH 3.0–a comprehensive resource for the genomemining of biosynthetic gene clusters. Nucleic Acids Research, (43), 237-243.
  44. Xu, T., Zhu, T. & Li, Sh. (2016). Β-1, 3-1, 4 glucanase gene from Bacillus velezensis ZY20 exerts antifungal effect on plant pathogenic fungi. World Journal of Microbiology and Biotechnology, 32(26), 1-9.
  45. Yang, H., Xue, Y., Yu, X. & Liu, C. (2014). Colonization of Bacillus amyloliquefaciens CC09 in wheat leaf and its biocontrol effect on powdery mildew disease. Microbiology China, 30, (4), 481-488.
  46. Yu, X., Ai, C., Xin, L. & Zhou, G. (2011). The siderophore producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, (47), 138-145
  47. Zhang, H., Kim, M. S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M. A., Ryu, C. M., Allen, R., Melo, I. S. & Pare, P. W. (2007). Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta, (226), 839-851.