Effectives of Bacillus velezensis UTB96 on reduction of zearalenone produced by Fusarium graminearum isolated from wheat

Document Type : Research Paper

Authors

1 Tehran University

2 tehran univerdity

3 tehran university

4 Assistant Professor, Cereal Research Department, Seed & Plant Improvement Institute (SPII), AREEO, Karaj, Alborz, Iran

Abstract

Wheat is exposed to various fungal pathogens especially Fusarium and their mycotoxins. Zearalenone as estrogenic toxin is one of the most popular toxin produce by the fungal agent of wheat head blight disease (Fusarium graminearum). Due to zearalenone contamination in wheat and wheat-based foods and its dangers to human and animal health, various physical, chemical and biological measures have to be established to reduce or prevent the zearalenone contamination. F. graminearum isolate obtained from cereal pathology department of seed and plant improvement institute was selected for further studies. Based on High-performance liquid chromatography (HPLC) analysis, Fusarium graminearum isolate could produce zearalenone. Biological experiments showed Duel-Culture of Bacillus velezensis UTB96 and Fusarium graminearum isolate decreased the fungal growth to 40 percent, as well as supernatant supplied from Bacillus velezensis UTB96 decreased the fungal growth to 54.5 percent. Bacillus velezensis UTB96 strain could decrease the zearalenone to 79 percent but B. velezensis UTB1strain had not any difference at 1% level to reduce the zearalenone toxin. The results showed Bacillus velezensis UTB96 strain capable to moderate the growth of Fusarium head blight and zearalenone contamination in wheat.

Keywords


  1. Ahlberg, S. H., Joutsjoki, V., & Korhonen, H. J. (2015). Potential of lactic acid bacteria in aflatoxin risk mitigation. International Journal of Food Microbiology207, 87-102.
  2. Alberts, J. F., Engelbrecht, Y., Steyn, P. S., Holzapfel, W. H., & Van Zyl, W. H. (2006). Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures. International Journal of Food Microbiology109(1-2), 121-126.
  3. Broadbent, P., & KF, B. (1977). Effect of Bacillus spp. on increased growth of seedlings in steamed and in nontreated soil.
  4. Cho, K. J., Kang, J. S., Cho, W. T., Lee, C. H., Ha, J. K., & Song, K. B. (2010). In vitro degradation of zearalenone by Bacillus subtilisBiotechnology Letters32(12), 1921-1924.
  5. Cotty, P. J., & Bhatnagar, D. (1994). Variability among atoxigenic Aspergillus flavus strains in ability to prevent aflatoxin contamination and production of aflatoxin biosynthetic pathway enzymes. Applied and Environmental Microbiology60(7), 2248-2251.
  6. Desjardins, A. E. (2006). Fusarium mycotoxins: chemistry, genetics, and biology. American Phytopathological Society (APS Press).
  7. Dunlap, C. A., Schisler, D. A., Price, N. P., & Vaughn, S. F. (2011). Cyclic lipopeptide profile of three Bacillus subtilis strains; antagonists of Fusarium head blight. The Journal of Microbiology49(4), 603.
  8. EFSA. (2011). (http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2011.2197/epdf).
  9. Farzaneh, M., Ahmadzadeh, M., Gasempour, A., Mirabolfathy, M., Javan-Ninkkhah, M., & Sharifi-Tehrani, A. (2011). survey on degradation mechanism of Bacillus subtilis in aflatoxin produced by Aspergillus flavousPlant Protection Science42(2), 191-198.(in farsi)
  10. Farzaneh, M., Shi, Z. Q., Ghassempour, A., Sedaghat, N., Ahmadzadeh, M., Mirabolfathy, M., & Javan-Nikkhah, M. (2012). Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran. Food Control23(1), 100-106.
  11. Fiddaman, P. J., & Rossall, S. (1993). The production of antifungal volatiles by Bacillus subtilisJournal of Applied Bacteriology74(2), 119-126.
  12. Gromadzka, K., Waśkiewicz, A., Goliński, P., & Świetlik, J. (2009). Occurrence of estrogenic mycotoxin–zearalenone in aqueous environmental samples with various NOM content. Water Research43(4), 1051-1059.
  13. International Agency for Research on Cancer, IARC. (1999). Overall Evaluations of Carcinogenicity to Humans. Monographs on the Evaluation of Carcinogenic Risk to Humans, IARC Monographs (Vol. 1). Lyon: IARC. 1–36.
  14. Iranian National Standards Organization. (2011). (http://isiri.gov.ir/oldstandard/portal/home/?65660)
  15. Ji, S. H., Paul, N. C., Deng, J. X., Kim, Y. S., Yun, B. S., & Yu, S. H. (2013). Biocontrol activity of Bacillus amyloliquefaciens CNU114001 against fungal plant diseases. Mycobiology41(4), 234-242.
  16. Kai, M., & Piechulla, B. (2009). Plant growth promotion due to rhizobacterial volatiles–An effect of CO2. FEBS Letters583(21), 3473-3477.
  17. Kazempour, M. N. (2004). Biological control of Rhizoctonia solani, the causal agent of rice sheath blight by antagonistics bacteria in greenhouse and field conditions. Plant Pathology Journal, 3(2), 88-96.
  18. Kokkonen, M., Jestoi, M. & Rizzo, A. (2005). The effect of substrate on mycotoxin production of selected Penicillium strains. International Journal of Food Microbiology99(2), 207-214.
  19. Leifert, C., Li, H., Chidburee, S., Hampson, S., Workman, S., Sigee, D. ... & Harbour, A. (1995). Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. Journal of Applied Bacteriology, 78(2), 97-108.
  20. Martins, M. L. & Martins, H. M. (2002). Influence of water activity, temperature and incubation time on the simultaneous production of deoxynivalenol and zearalenone in corn (Zea mays) by Fusarium graminearumFood Chemistry79(3), 315-318.
  21. Melnick, R. L., Zidack, N. K., Bailey, B. A., Maximova, S. N., Guiltinan, M. & Backman, P. A. (2008). Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biological Control46(1), 46-56.
  22. Mirocha, C. J., Schauerhamer, B., Christensen, C. M., Niku-Paavola, M. L. & Nummi, M. (1979). Incidence of zearalenol (Fusarium mycotoxin) in animal feed. Applied and Environmental Microbiology38(4), 749-750.
  23. Ongena, M. & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology16(3), 115-125.
  24. Pitt, J. I. (2000). Toxigenic fungi: which are important?. Sabouraudia, 38(Supplement_1), 17-22.
  25. Raaijmakers, J. M., De Bruijn, I., Nybroe, O. & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiology Reviews34(6), 1037-1062.
  26. Sadiq, F. A., Yan, B., Tian, F., Zhao, J., Zhang, H. & Chen, W. (2019). Lactic Acid Bacteria as Antifungal and Anti‐Mycotoxigenic Agents: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety18(5), 1403-1436.
  27. Samsudin, N. I. P. B. (2015). Potential biocontrol of fumonisin B1 production by Fusarium verticillioides under different ecophysiological conditions in maize. Cranfield University.
  28. Sanchis, V. & Magan, N. (2004). Environmental conditions affecting mycotoxins. Mycotoxins in Food: Detection and Control, 174-189.
  29. Shahcheraghi, S. H., Ayatollahi, J. & Lotfi, M. (2015). Applications of Bacillus subtilis as an important bacterium in medical sciences and human life. Tropical Journal of Medical Research18(1), 1.
  30. Sierra, A.G., El- Hassan, A., Hoglinger, B. & Voegele, R.T. (2016). Inhibitory actions of Bacillus subtilis HG77 on Fusarium graminearum and its zearalenone production. University of Hohenheim, Germany.
  31. Sundlof, S. F. & Strickland, C. (1986). Zearalenone and zeranol: potential residue problems in livestock. Veterinary and Human Toxicology28(3), 242.
  32. Tinyiro, S. E., Wokadala, C., Xu, D. & Yao, W. (2011). Adsorption and degradation of zearalenone by Bacillus strains. Folia Microbiologica56(4), 321.
  33. Toure, Y., Ongena, M. A. R. C., Jacques, P., Guiro, A. & Thonart, P. (2004). Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. Journal of Applied Microbiology96(5), 1151-1160.
  34. Vahidinasab, M., Ahmadzadeh, M., Henkel, M., Hausmann, R. & Heravi, K. M. (2019). Bacillus velezensis UTB96 Is an Antifungal Soil Isolate with a Reduced Genome Size Compared to That of Bacillus velezensis FZB42. Microbiology Resource Announcements, 8(38), e00667-19.
  35. Zalila-Kolsi, I., Mahmoud, A. B., Ali, H., Sellami, S., Nasfi, Z., Tounsi, S. & Jamoussi, K. (2016). Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum). Microbiological Research192, 148-158.