The effect of arbuscular mycorrhizae on Verticillium wilt of pistachio rootstocks Ahmad Aghaei and Badami Zarand: growth, nutritional and biochemical characteristics

Document Type : Research Paper


1 ِPh. D. student, Department of Plant Pathology, Faculty of Agriculture, University of Zabol, Iran

2 Associate Professor, Department of Plant Pathology, Faculty of Agriculture, University of Zabol, Iran

3 Assistant Professor, Pistachio Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rafsanjan, Iran

4 Associate Professor, Department of Plant Protection, Gorgan University of Agricultural Sciences and Natural Resources, Iran


Verticillium wilt is one of the important diseases that causes economic damage to pistachio trees. Arbuscular mycorrhizae in addition to improvement of plant growth, can increase tolerance to plant pathogens. In this research, the effect of mixture of three species of arbuscular mycorrhizal fungi, Funneliformis mosseae, Rhizophagus irregularis and Claroideoglomus etunicatum was evaluated on Verticillium wilt of pistachio rootstocks Ahmad Aghaei and Badami Zarand (susceptible and resistant to Verticillium dahliae, respectively). Arbuscular mycorrhizae (AM) inoculation was done at the time of sowing pistachio seeds and pathogen (Vd) inoculated after 52 days using amended inoculum on sand-barley flour-distilled water substrate. The experiment was performed as factorial in completely randomized design with 5 replications in greenhouse conditions. The results showed that the inoculation of AM increases shoot and root dry weight, stem height and diameter, leaf area, concentration of nutrients, proline, soluble sugars, chlorophyll comparison with the control and inoculated plants with the pathogen. In AM+Vd treatment, the presence of the pathogen only in Ahmad Aghaei rootstock caused a decrease in the colonization percentage of arbuscular mycorrhizal fungi comparison with the AM treatment. At the end of the experiment, the pathogenicity index in the Vd treatment was 3.9 and 1.9 in Ahmad Aghaei and Badami Zarand rootstocks respectively but in the AM+Vd treatment it reached to 3.6 and 1.1, which showed a significant decrease in disease severity. It is concluded that inoculation of AM by improving the growth, nutritional and biochemical characteristics can increase resistance of pistachio seedlings to Verticillium wilt.


  1. Ahmadi, K., Ebadzadeh, H. D., Hatami, F., Hosseinpour, R., & Abdulshahi, H. (2020). Agricultural statistics of 2019. Ministry of Agriculture, 3, 158.
  2. Al-Askar, A., & Rashad, Y. (2010). Arbuscular mycorrhizal fungi: a biocontrol agent against common. Plant Pathology Journal, 9(1), 31-38.
  3. Amaral, J., Pinto, G., Flores‐Pacheco, J. A., DÝez‐Casero, J., Cerqueira, A., Monteiro, P., MartÝn‐GarcÝa, J. (2019). Effect of Trichoderma viride pre‐inoculation in pine species with different levels of susceptibility to Fusarium circinatum: physiological and hormonal responses. plant pathology, 68(9), 1645-1653.
  4. Atakan, A., & Ozkaya, H. O. (2021). Induced resistance to Fusarium wilt in carnation with mixture of mycorrhizal fungi. Fresenius Environmental Bulletin, 30(4 A), 4217-4227.
  5. Bastías, D. A., Alejandra Martínez‐Ghersa, M., Newman, J. A., Card, S. D., Mace, W. J., & Gundel, P. E. (2018). The plant hormone salicylic acid interacts with the mechanism of anti‐herbivory conferred by fungal endophytes in grasses. Plant, Cell & Environment, 41(2), 395-405.
  6. Bates, L. S., Waldren, R. P., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207.
  7. Behmanesh, Z., Alaei, H., Mohammadi, A. H., & Dashti, H. (2020). Effect of arbuscular mycorrhizas Glomus intraradices and Glomus mosseae on‎ pistachio root rot caused by Phytophthora under salinity stress. Iranian Journal of Plant Protection Science, 50(2), 197-212.
  8. Boutaj, H., Chakhchar, A., Meddich, A., Wahbi, S., Alaoui-Talibi, E., Douira, A., El Modafar, C. (2020a). Bioprotection of olive tree from Verticillium wilt by autochthonous endomycorrhizal fungi. Journal of Plant Diseases and Protection, 127(3), 349-357.
  9. Boutaj, H., Meddich, A., Chakhchar, A., Wahbi, S., El Alaoui-Talibi, Z., Douira, A., El Modafar, C. (2020b). Arbuscular mycorrhizal fungi improve mineral nutrition and tolerance of olive tree to Verticillium wilt. Archives of Phytopathology and Plant Protection, 53(13-14), 673-689.
  10. Boutaj, H., Meddich, A., Wahbi, S., Moukhli, A., El Alaoui-Talibi, Z., Douira, A., El Modafar, C. (2019). Effect of Arbuscular Mycorrhizal Fungi on Verticillium wilt development of olive trees caused by Verticillium dahliae. Research Journal of Biotechnology Vol, 14, 8.
  11. Bradstreet, R. B. (1954). Kjeldahl method for organic nitrogen. Analytical Chemistry, 26(1), 185-187.
  12. Declerck, S., Risède, J.-M., Rufyikiri, G., & Delvaux, B. (2002). Effects of arbuscular mycorrhizal fungi on severity of root rot of bananas caused by Cylindrocladium spathiphylli. Plant Pathology, 51(1), 109-115.
  13. Epstein, L., Beede, R., Kaur, S., & Ferguson, L. (2004). Rootstock effects on pistachio trees grown in Verticillium dahliae-infested soil. Phytopathology, 94(4), 388-395.
  14. Fattahi, M., Mohammadkhani, A., Shiran, B., Baninasab, B., Ravash, R., & Gogorcena, Y. (2021). Beneficial effect of mycorrhiza on nutritional uptake and oxidative balance in pistachio (Pistacia spp.) rootstocks submitted to drought and salinity stress. Scientia Horticulturae, 281, 109937.
  15. Fotoohiyan, Z., Rezaee, S., Shahidi Bonjar, G. H., Mohammadi, A., & Moradi, M. (2015). Induction of Systemic Resistance by Trichoderma harzianum Isolates in Pistachio Plants in-Fected with Verticillium dahliae. Journal of Nuts, 6(02), 95-111.
  16. Fradin, E. F., & Thomma, B. P. (2006). Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo‐atrum. Molecular Plant Pathology, 7(2), 71-86.
  17. Fu, X., Yang, F., Wang, J., Di, Y., Dai, X., Zhang, X., & Wang, H. (2015). Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation. Science of the Total Environment, 502, 280-286.
  18. Garmendia, I., Goicoechea, N., & Aguirreolea, J. (2004). Effectiveness of three Glomus species in protecting pepper (Capsicum annuum L.) against Verticillium wilt. Biological Control, 31(3), 296-305.
  19. Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist,84(3), 489-500.
  20. Hadizadeh, I., & Banihashemi, Z. (2005). Reaction of Pistacia vera cultivars to Verticillium dahliae the causal agent of vascular-wilt. Plant Pathology, 41(4), 561-581 [in farsi].
  21. Hao, Z., Christie, P., Qin, L., Wang, C., & Li, X. (2005). Control of Fusarium wilt of cucumber seedlings by inoculation with an arbuscular mycorrhical fungus. Journal of Plant Nutrition, 28(11), 1961-1974.
  22. Huang, J., Li, H., & Yuan, H. (2006). Effect of organic amendments on Verticillium wilt of cotton. Crop Protection, 25(11), 1167-1173.
  23. Inderbitzin, P., Bostock, R. M., Davis, R. M., Usami, T., Platt, H. W., & Subbarao, K. V. (2011). Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PloS one, 6(12), e28341.
  24. Inderbitzin, P., & Subbarao, K. V. (2014). Verticillium systematics and evolution: how confusion impedes Verticillium wilt management and how to resolve it. Phytopathology, 104(6), 564-574.
  25. Irigoyen, J., Einerich, D., & Sánchez‐Díaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, 84(1), 55-60.
  26. Jafary, H., Khanmohammadi, S., & Mehri, N. (2014). Detection of pathotypes of Verticillium dahliae, the causal agent of olive Verticillium wilt in olive orchards of Tarom using Nested-PCR technique. Journal of Applied Research in Plant Protection, 2(2), 47-58.
  27. Jamdar, Z., Mohammadi, A., & Mohammadi, S. (2013). Study of Antagonistic Effects of Trichoderma Species on Growth of Verticillium dahliae, the Causal Agent of Verticillium Wilt of Pistachio under Laboratory Condition. Journal of Nuts, 4(4), 53-56.
  28. Kalra, Y. P., & Maynard, D. G. (1991). Methods manual for forest soil and plant analysis (Vol. 319). Du Service Canadien Des Forêts.
  29. Kapulnik, Y., Zipori, I., Hazanovsky, M., Wininger, S., & Dag, A. (2010). Effect of AMF application on growth, productivity and susceptibility to Verticillium wilt of olives grown under desert conditions. Symbiosis, 52(2), 103-111.
  30. Karagiannidis, N., Bletsos, F., & Stavropoulos, N. (2002). Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Scientia Horticulturae, 94(1-2), 145-156.
  31. Khrieba, M. I., Sharifnabi, B., & Zangeneh, S. (2019). Interaction between arbuscular mycorrhiza fungi (AMF) with Verticillium dahliae Kleb. on olive tree under greenhouse conditions. Research Journal of Agricultural Sciences, 6(3), 185-191.
  32. Kim, Y., Xiao, C., & Rogers, J. (2005). Influence of culture media and environmental factors on mycelial growth and pycnidial production of Sphaeropsis pyriputrescens. Mycologia, 97(1), 25-32.
  33. Klosterman, S. J., Atallah, Z. K., Vallad, G. E., & Subbarao, K. V. (2009). Diversity, pathogenicity, and management of Verticillium species. Annual Review of Phytopathology, 47, 39-62.
  34. Kormanik, P. P., & McGraw, A. (1982). Quantification of vesicular-arbuscular mycorrhizae in plant roots. The American Phytopathological Society, St. Paul, Minnesota, 37–45.
  35. Kowalska, B. (2021). Management of the soil-borne fungal pathogen–Verticillium dahliae Kleb. causing vascular wilt diseases. Journal of Plant Pathology, 103(4), 1185-1194.
  36. Langendorf, B. (2017). Arbuscular mycorrhizal fungi pre-colonisation for improving the growth and health of strawberry (Fragaria x ananassa) University of York].
  37. Lichtenthaler, H. K. (1987). [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in Enzymology, 148, 350-382. Elsevier.
  38. Luo, X., Xie, C., Dong, J., Yang, X., & Sui, A. (2014). Interactions between Verticillium dahliae and its host: vegetative growth, pathogenicity, plant immunity. Applied Microbiology and Biotechnology, 98(16), 6921-6932.
  39. Marulanda, A., Azcon, R., & Ruiz‐Lozano, J. M. (2003). Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiologia Plantarum, 119(4), 526-533.
  40. Masson, P., Dalix, T., & Bussiere, S. (2010). Determination of major and trace elements in plant samples by inductively coupled plasma–mass spectrometry. Communications in Soil Science and Plant Analysis, 41(3), 231-243.
  41. Mercado-Blanco, J., Rodríguez-Jurado, D., Pérez-Artés, E., & Jiménez-Díaz, R. M. (2002). Detection of the defoliating pathotype of Verticillium dahliae in infected olive plants by nested PCR. European Journal of Plant Pathology, 108(1), 1-13.
  42. Metwally, R. A. (2020). Arbuscular mycorrhizal fungi and Trichoderma viride cooperative effect on biochemical, mineral content, and protein pattern of onion plants. Journal of Basic Microbiology, 60(8), 712-721.
  43. Mohammadi, A., & Banihashemi, Z. (2008). Effect of different levels of sodium chloride on Verticillium wilt disease of pistachio in water culture environment. Isfahan University of Technology, 12(45), 239-248[in farsi].
  44. Mohammadi, A., Banihashemi, Z., & Maftoun, M. (2007). Interaction between salinity stress and Verticillium wilt disease in three pistachio rootstocks in a calcareous soil. Journal of Plant Nutrition, 30(2), 241-252.
  45. Moral, J., López-Escudero, F., Roca, L., Blanco-López, M., & Trapero, A. (2010). First report of Verticillium wilt of Pistachio caused by Verticillium dahliae in spain. Plant Disease, 94(3), 382-382.
  46. Morgan, D., Epstein, L., & Ferguson, L. (1992). Verticillium wilt resistance in pistachio rootstock cultivars: assays and an assessment of two interspecific hybrids. Plant Disease, 76(3), 310-313.
  47. Norouzi, K., Jalil, K., & Youbert, G. (2011). Arbuscular mycorrhizal fungi and biological control of Verticillium-wilted cotton plants. Archives of Phytopathology and Plant Protection, 44(10), 933-942.
  48. Pérez-Artés, E., García-Pedrajas, M. D., Bejarano-Alcázar, J., & Jiménez-Díaz, R. M. (2000). Differentiation of cotton-defoliating and nondefoliating pathotypes of Verticillium dahliae by RAPD and specific PCR analyses. European Journal of Plant Pathology, 106(6), 507-517.
  49. Piliarová, M., Ondreičková, K., Hudcovicová, M., Mihálik, D., & Kraic, J. (2019). Arbuscular mycorrhizal fungi–their life and function in ecosystem. Agriculture (Pol'nohospodárstvo), 65(1), 3-15.
  50. Poveda Arias, J., & Baptista, P. (2021). Filamentous fungi as biocontrol agents in olive (Olea europaea L.) diseases: mycorrhizal and endophytic fungi. Crop Protection, 146(2021), 105672
  51. Pozo, M. J., Jung, S. C., Martínez-Medina, A., López-Ráez, J. A., Azcón-Aguilar, C., & Barea, J.-M. (2013). Root allies: arbuscular mycorrhizal fungi help plants to cope with biotic stresses. In Symbiotic Endophytes (pp. 289-307). Springer.
  52. Puri, K. D., Hu, X., Gurung, S., Short, D. P., Sandoya, G. V., Schild, M., Klosterman, S. J. (2021). Verticillium klebahnii and V. isaacii Isolates Exhibit Host-dependent Biological Control of Verticillium Wilt Caused by V. dahliae. Phyto Frontiers™, 1(4), 276-290.
  53. Rajeswari, P. (2015). Control of Fusarium oxysporum causing Fusarium wilt by Trichoderma spp and Pseudomonas fluorescens on Arachis hypogaea L. International Journal of Advanced Biotechnology and Research, 6, 57-65.
  54. Raza, S., Akhter, A., Wahid, F., Hashem, A., & Abd_Allah, E. (2022). Rhizophagus intraradices and tomato-basil companionship affect root morphology and root exudate dynamics in tomato under Fusarium wilt disease stress. Applied Ecology and Environmental Research, 20(1), 235-249.
  55. Rini, M. V., Susilowati, E., Riniarti, M., & Lukman, I. (2020). Application of Glomus sp. and a mix of Glomus sp. with Gigaspora sp. in improving the Agarwood (Aquilaria malaccensis Lamk.) seedling growth in Ultisol soil. IOP Conference Series: Earth and Environmental Science, 449, 1-6.
  56. Salajegheh, F., Mahdi, S., & Hamid, M. (2014). The effect of mycorrhizal fungus Glomus sp. on the growth and root rot disease of beans Pistachio caused by Fusarium solani in greenhouse conditions. Journal of Soil Biology, 2(2), 126-136 [in farsi].
  57. Shaban, M., Miao, Y., Ullah, A., Khan, A. Q., Menghwar, H., Khan, A. H., Zhu, L. (2018). Physiological and molecular mechanism of defense in cotton against Verticillium dahliae. Plant Physiology and Biochemistry, 125, 193-204.
  58. Shamsaddensaeed, F., Radman, N., Mohammadi, A. H., Pirnia, M., & Taheri, A. H. (2022). The effect of arbuscular mycorrhizas, Trichoderma harzianum and their combination on Phytophthora root rot of pistachio seedlings cv. Momtaz: growth, nutritional and biochemical characteristics. Applied Entomology and Phytopathology, 89(2), 243-255.
  59. Sheng, M., Tang, M., Chen, H., Yang, B., Zhang, F., & Huang, Y. (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18(6), 287-296.
  60. Shuman, S. (1994). Novel approach to molecular cloning and polynucleotide synthesis using vaccinia DNA topoisomerase. Journal of Biological Chemistry, 269(51), 32678-32684.
  61. Singh, V., Naveenkumar, R., & Muthukumar, A. (2019). Arbuscular mycorrhizal fungi and their effectiveness against soil borne diseases. Management, 183, 199.
  62. Sowik, I., Borkowska, B., & Markiewicz, M. (2016). The activity of mycorrhizal symbiosis in suppressing Verticillium wilt in susceptible and tolerant strawberry (Fragaria x ananassa Duch.) genotypes. Applied Soil Ecology, 101, 152-164.
  63. Tarraf, W., Ruta, C., Tagarelli, A., De Cillis, F., & De Mastro, G. (2017). Influence of arbuscular mycorrhizae on plant growth, essential oil production and phosphorus uptake of Salvia officinalis L. Industrial Crops and Products, 102, 144-153.
  64. Temple, S. H., DeVay, J., & Forrester, L. L. (1973). Temperature effects upon development and pathogenicity of defoliating and nondefoliating pathotypes of Verticillium dahliae in leaves of cotton plants. Phytopathology, 63, 953-958.
  65. Usami, T., Momma, N., Kikuchi, S., Watanabe, H., Hayashi, A., Mizukawa, M., Ohmori, Y. (2017). Race 2 of Verticillium dahliae infecting tomato in Japan can be split into two races with differential pathogenicity on resistant rootstocks. Plant Pathology, 66(2), 230-238.
  66. Vahabi, K., Reichelt, M., Scholz, S. S., Furch, A. C., Matsuo, M., Johnson, J. M., Oelmüller, R. (2018). Alternaria brassicae induces systemic jasmonate responses in Arabidopsis which travel to neighboring plants via a Piriformsopora indica hyphal network and activate abscisic acid responses. Frontiers in Plant Science, 9, 626.
  67. Vigo, C., Norman, J., & Hooker, J. (2000). Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathology, 49(4), 509-514.
  68. Wang, C., Li, X., & Song, F. (2012). Protecting cucumber from Fusarium wilt with arbuscular mycorrhizal fungi. Communications in Soil Science and Plant Analysis, 43(22), 2851-2864.
  69. Whipps, J. M. (2004). Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Canadian Journal of Botany, 82(8), 1198-1227.
  70. Wu, Q.-S., & Xia, R.-X. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163(4), 417-425.
  71. Zhou, J., Chai, X., Zhang, L., George, T. S., Wang, F., & Feng, G. (2020). Different arbuscular mycorrhizal fungi colonizing on a single plant root system recruit distinct microbiomes. Msystems, 5(6), e00929-00920.