Evaluation of the antagonistic effect of Trichoderma species on Phytophthora citrophthora, the causal agent of citrus root and crown rot

Document Type : Research Paper


1 Department of Crop Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Iran

2 Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Kerman, Iran

3 Department of Plant Protection, Faculty of Agriculture, Valiasr University, Rafsanjan, Rafsanjan, Iran.


Crown and root rot is one of the important diseases of citrus trees in Iran. Various methods, including biological control, have been proposed to control this disease. Trichoderma species are widely present in all soils and plant materials. In this study, 27 Trichoderma strains were used for biological control of Phytophthora citrophthora. Measurement of cellulase enzyme and beta 1-3 glucanase produced by Trichoderma spp. was done using the dinitrosalicylic acid method. The results showed that the highest values are related to T. harzianum CT-763 and T. virens CT-9715 strains with 2 µmol/ml enzyme activity. Macroscopic and microscopic examinations of the dualculture of different Trichoderma strains with the pathogen, the inhibitory effect of volatile and non-volatile metabolites on mycelial growth of the pathogen were done. All Trichoderma strains and their volatile and non-volatile compounds inhibited on pathogen mycelia growth. The highest percentage of inhibition dualculture tests was caused by T. virens CT-9715. The highest inhibitory effect was determined for T. afroharzianum CT-891, T. aureoviridis CT-936, T. atroviride CT-865 with 100% and T. afroharzianum CT-55 with 50% in the non-volatile and volatile compounds assay, respectively. In microscopic examination of mycoparasitism effect of Trichoderma spp. and P. citrophthora, it was found that T. harzianum (CT-566, CT-862, CT-634, CT-873), T. afroharzianum CT-55 and T. aureoviridis CT-936, destroyed the mycelium of pathogen by a process such as twisting and lysis. For application of these successful local strains as biopesticide, it is necessary to perform additional studies on their biocontrol effects on Phytophthora in natural conditions.


  1. Afek, U., Sztejnberg, A., & Solel, Z. (1990). A rapid method for evaluating citrus seedlings for resistance to foot rot caused by Phytophthora citrophthora. Plant Disease, 74(1), 66-68.
  2. Alaei, H., & Rostami, F. (2012). Identification of cucumber damping-off based on morphological and molecular characterizations in Rafsanjan. Iranian Journal of Plant Pathology, 48(4), 177-182.
  3. Anjum, M. Z., Ghazanfar, M. U., & Hussain, I. (2019). Bio-efficacy of Trichoderma isolates and Bacillus subtilis against root rot of muskmelon Cucumis melo L. caused by Phytophthora drechsleri under controlled and field conditions. Pakistan Journal of Botany, 51(5), 1877-1882.
  4. Asadi, F., Alaei, H., Saberi Riseh, R., & Zeynadini Riseh, A. (2019). The effect of beneficial Trichoderma species isolated from sodic and saline soils to control Fusarium root rot of cucumber (Fusarium solani). Journal of Biocontrol in Plant Protection, 6(2), 43-55 (In Farsi).
  5. Ayobi, N., Zafari, D., & Mirabolfathi, M. (2010). Effect of Trichoderma species on zoospore production of Phytophthora sojae, disease severity, and glucanase enzymes activity assay. Iranian Journal of Plant Pathology, 46(3), 203-215 (In Farsi).
  6. Banihashemi, Z. & Moradi, M. 2004. The frequency of isolation of Phytophthora spp. from crown and root of pistachio nut tree and reaction of the crown and root to the causal agent. Iranian Journal of Plant Pathology 40(2), 57-75 (In Farsi)
  7. Barahoei, N (2016). Identification of Trichoderma isolates from the soil of citrus orchards in Kerman province and investigation of the enzyme activity of isolates effective in controlling citrus gummosis disease., M. Sc. Dissertation, Vali-e-Asr University of Rafsanjan, Iran. (In Farsi).
  8. Barahoei, N., Alaei, H., Saberi, R. & Sedaghati, E. (2015). Identification of the predominant species of Trichoderma from the soil and root of citrus trees in Kerman province, 2 nd Iranian Mycological Congress, College of Agriculture and Natural Resources, 23-25 August, University of Tehran-Karaj. (In Farsi).
  9. Behboudi, K., Sharifi, T. A., Hejaroud, G. A., & Zad, S. J. (2005). Antagonistic effects of Trichoderma species on Phytophthora capsici, the causal agent of pepper root and crown rot. Iranian Journal of Plant Pathology 41(3), 345-362 (In Farsi).
  10. Benitez, T., Rincon, A. M., Limon, M. C., & Codon, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7(4), 249-260.
  11. Burmeister, L. (2008). The antagonistic mechanisms employed by Trichoderma harzianum and their impact on the control of the bean rust fungus Uromyces appendiculatus. University of Hannover, Germany.
  12. Choudhary, A. K., Singh, N., & Singh, D. (2021). Evaluation of the bioformulation of potent native strains of Trichoderma spp. against the foot rot/gummosis of Kinnow mandarin. Egyptian Journal of Biological Pest Control, 31(1), 1-11.
  13. Dennis, C., & Webster, J. (1971a). Antagonistic properties of species-groups of Trichoderma: III. Hyphal interaction. Transactions of the British Mycological Society, 57(3), 363-IN362.
  14. Dennis, C. & Webster, J. (1971b). Antagonistic properties of species groups of Trichoderma: II. Production of volatile antibiotics. Transactions of the British Mycological Society, 57(1), 41-48.
  15. Dennis, C., & Webster, J. (1971c). Antagonistic properties of species-groups of Trichoderma: I. Production of non-volatile antibiotics. Transactions of the British Mycological Society, 57(1), 25-IN23.
  16. Elsherbiny, E. A., Amin, B. H., Aleem, B., Kingsley, K. L., & Bennett, J. W. (2020). Trichoderma volatile organic compounds as a biofumigation tool against late blight pathogen Phytophthora infestans in postharvest potato tubers. Journal of Agricultural and Food Chemistry, 68(31), 8163-8171.
  17. Erwin, D. C. & Ribeiro, O. K. (1996) Phytophthora Diseases Worldwide. American Phytopathological Society Press, St. Paul, MN.
  18. Fani, S. R., Moradi Ghahderijani, M., Moghaddam, M., Sherafati, A., Moghaddam, M., Sedaghati, E., & Khodaygan, P. (2013). Efficacy of native strains of Trichoderma harzianum in biocontrol of pistachio gummosis. Iranian Journal of Plant Protection Science, 44(2). 243-252. (In Farsi)
  19. FAO. 2021. Citrus Fruit Statistical Compendium 2020. Rome.
  20. Frascella, A., Sarrocco, S., Mello, A., Venice, F., Salvatici, C., Danti, R., Emiliani, G., Barberini, S & Della Rocca, G. (2022). Biocontrol of Phytophthora xcambivora on Castanea sativa: selection of local Trichoderma spp. isolates for the management of Ink disease. Forests, 13(7), 1065.
  21. Gade, R., & Lad, R. (2018). Biological management of major citrus diseases in central India-a review. International Jourbal of Current Microbiological Applied Science, 6, 296-308.
  22. Iqbal, S., Ashfaq, M., Malik, A. H., & Haq, M. I. (2022). Antagonistic screening and confronting potential of Trichoderma viride against Pakistani and American soil borne-pathogens (Pythium aphenidermatum, Fusarium oxysporum and Phytophthora capsica) in controlled conditions. Pakistan Journal of Phytopathology, 34(1), 81-91.
  23. Jamali, S., Panjehkeh, N., & Mohammadi, A. H. (2016). Inhibition of Trichoderma species from growth and zoospore production of Phytophthora drechsleri and their effects on hydrolytic enzymes. Journal of Nuts, 07(02), 137-148.
  24. Jeffers, S. & Martin, S. (1986). Comparison of two media selective for Phytophthora and Pythium species. Plant Disease, 70(11), 1038-1043.
  25. Kaur, R., Kalia, A., Lore, J. S., & Sandhu, J. S. (2020). Antifungal effect of Trichoderma spp. β‐1, 3‐glucanase on Phytophthora parasitica: Hyphal morphological distortions. Journal of Phytopathology, 168(11-12), 700-706.
  26. Kim, J. J., Kwon, Y. K., Kim, J. H., Heo, S. J., Lee, Y., Lee, S. J., Shim, W. S., Jung, W. K., Hynm, J. H., Kwon, K. K., Kang, D. H. & Oh, C. (2014). Effective microwell plate-based screening method for microbes producing cellulase and xylanase and its application. Journal of Microbiology and Biotechnology, 24(11), 1559-1565.
  27. La Spada, F., Stracquadanio, C., Riolo, M., Pane, A., & Cacciola, S. O. (2020). Trichoderma counteracts the challenge of Phytophthora nicotianae infections on tomato by modulating plant defense mechanisms and the expression of crinkler, necrosis-inducing Phytophthora protein 1, and cellulose-binding elicitor lectin pathogenic effectors. Frontiers in Plant Science, 11, 583539.
  28. Mannai, S., & Boughalleb-M’Hamdi, N. (2022). In vitro and in planta potential effect of some indigenous antagonists against Fusarium and pythiaceous species associated with peach seedlings decline. Egyptian Journal of Biological Pest Control, 32(1), 1-10.
  29. Mustafa, G., Anwar, S., Joyia, F., Hayat, M., Zia, M., & Khan, M. (2020). Molecular characterization and mycoparasitic aptitude of indigenous biocontrol agent Trichoderma harzianum. JAPS: Journal of Animal and Plant Sciences, 30(6). 1508-1515
  30. Naeimi, S., & Zare, R. (2013). Evaluation of indigenous Trichoderma spp. isolates in biological control of Botrytis cinerea, the causal agent of strawberry gray mold disease. Biocontrol in Plant Protection, 1(2), 55-74. (In Farsi)
  31. Neethu, K., Rubeena, M., Sajith, S., Sreedevi, S,. Priji, P,. Unni, K. N,. Sarath Josh, M. K,. Jisha, V. N,. Pradeep, S. & Benjamin, S. (2012). A novel strain of Trichoderma viride shows complete lignocellulolytic activities. Advances in Bioscience and Biotechnology, 3, 1160-1166.
  32. Ruangwong, O.-U., Pornsuriya, C., Pitija, K., & Sunpapao, A. (2021). Biocontrol mechanisms of Trichoderma koningiopsis PSU3-2 against postharvest anthracnose of chili pepper. Journal of Fungi, 7(4), 276.
  33. Ruiz-Gómez, F. J., & Miguel-Rojas, C. (2021). Antagonistic potential of native Trichoderma spp. against Phytophthora cinnamomi in the control of holm oak decline in Dehesas ecosystems. Forests, 12(7), 945.
  34. Sadeghy, B., Rohani, M., & Aghasi, N. (2014). Distribution of Phytophthora citrophthora RE Sm. and EH Sm. and P. parasitica Dastur within citrus orchards in Kerman province, Iran. Archives of Phytopathology and Plant Protection, 47(2), 254-258.
  35. Sawake, M. M., Moharil, M. P., Ingle, Y. V., Jadhav, P. V., Ingle, A. P., Khelurkar, V. C., Paithankar, D., Bathe, G. & Gade, A. K. (2022). Management of Phytophthora parasitica causing gummosis in citrus using biogenic copper oxide nanoparticles. Journal of Applied Microbiology, 132(4), 3142-3154.
  36. Singh, A., & Islam, M. (2010). In vitro evaluation of Trichoderma spp. against Phytophthora nicotianae. Int. J. Expt. Agric, 1(1), 20-25.
  37. Taherzadeh-Ghahfarokhi, M., Panahi, R., & Mokhtarani, B. (2022). Medium supplementation and thorough optimization to induce carboxymethyl cellulase production by Trichoderma reesei under solid state fermentation of nettle biomass. Preparative Biochemistry & Biotechnology, 52(4), 375-382.
  38. Tomah, A. A., Abd Alamer, I. S., Li, B., & Zhang, J.-Z. (2020). A new species of Trichoderma and gliotoxin role: A new observation in enhancing biocontrol potential of T. virens against Phytophthora capsici on chili pepper. Biological Control, 145, 104261.
  39. Vinale, F., Ghisalberti, E., Sivasithamparam, K., Marra, R., Ritieni, A., Ferracane, R., Woo, S. & Lorito, M. (2009). Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Letters in Applied Microbiology, 48(6), 705-711.
  40. Win, T. T., Bo, B., Malec, P., Khan, S., & Fu, P. (2021). Newly isolated strain of Trichoderma asperellum from disease suppressive soil is a potential bio-control agent to suppress Fusarium soil borne fungal phytopathogens. Journal of Plant Pathology, 103, 549-561.
  41. Xiang, L., Lin, Y., Tian, Y., Liu, Q., Chen, L., & Tan, Z. (2021). Ammonium ions induce cellulase synthesis in Trichoderma koningii. Current Microbiology, 78(8), 3201-3211.
  42. Zavvari, F., Sahebani, N., & Etebarian, H. R. (2013). Measuring of 1, 3 glucanase activity in Trichoderma virens isolates and selection of the best isolates for biological control of cucumber root rot. Journal of Agricultural Science and Sustainable Production 22(4), 149-161. (In Farsi)
  43. Zhang, Y. P., Hong, J., & Ye, X. (2009). Cellulase assays. Biofuels: Methods and Protocols, 213-231.