Evaluation of biochemical and molecular changes of tomato plants interacted with Alternaria solani

Document Type : Research Paper

Authors

1 Ph. D. Candidate, Department of Plant Protection, University of Zabol, Iran

2 Associate Professor, Department of Plant Protection, University of Zabol, Iran

3 Assistant Professor, Department of Biotechnology, Institute of Science, High technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

4 Associate Professor, Department of Biology, Faculty of Science, Yazd University, Iran

Abstract

Early blight disease is one of the most common foliar diseases of tomato, which causes a great reduction in the quantity and quality of its yield. Regarding the use of fungicides in controlling this disease, identification of plant defense mechanism against the pathogen can be useful in introducing resistant cultivars and controlling the damage of the pathogen. In this research, several biochemical changes and expression patterns of PR1b1 and WRKY33 genes were investigated by qRT-PCR in a resistant cultivar Super 2270 and a susceptible cultivar CH Flat infected with the fungus Alternaria solani. Sampling was done during five intervals with three replications. The hydrogen peroxide accumulation, activity of defense enzymes Guacul peroxidase, Catalase and Superoxide dismutase enzymes, and the number of transcripts of genes was found to be increased in a challenge with the pathogen. The activity of these enzymes and genes were higher in the resistant cultivar. H2O2 accumulated rapidly in the resistant cultivar leaf tissues and peaked during the early stages of infection, whereas accumulation was stronger and more intense in the susceptible cultivar tissues in later stages.These results indicated that the induction of oxidant/antioxidant responses and the activity of genes in this study are a part of the tomato defense mechanism against the necrotrophic fungus A.solani.

Keywords


  1. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126.
  2. Alves, M. S., Dadalto, S. P., Gonçalves, A. B., de Souza, G. B., Barros, V. A. & Fietto, L. G. (2014). Transcription factor functional protein-protein interactions in plant defense responses. Proteomes, 2(1), 85-106.
  3. Adhikari, P., Oh, Y. & Panthee, D. R. (2017). Current status of early blight resistance in tomato: an update. International Journal of Molecular Sciences, 18(10), 2019-2041.‌
  4. Asselbergh, B., Curvers, K., França, S. C., Audenaert, K., Vuylsteke, M., Van Breusegem, F. & Höfte, M. (2007). Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiology, 144(4), 1863-1877.
  5. Balbi-Peña, M. I., Schwan-Estrada, K. R. F. & Stangarlin, J. R. (2014). Oxidative burst and the activity of defense-related enzymes in compatible and incompatible tomato-Alternaria solani interactions. Semina: Ciências Agrárias, 35(5), 2399-2414.
  6. Chen, F., Hu, Y., Vannozzi, A., Wu, K., Cai, H., Qin, Y. & Zhang, L. (2018). The WRKY Transcription Factor Family in Model Plants and Crops. Critical Reviews in Plant Sciences, 1-25.‌
  7. Debona, D., Rodrigues, F. Á., Rios, J. A. & Nascimento, K. J. T. (2012). Biochemical changes in the leaves of wheat plants infected by Pyricularia oryzae. Phytopathology, 102(12), 1121-1129.‌
  8. El-Komy, M. H. (2014). Comparative analysis of defense responses in chocolate spot-resistant and-susceptible Faba Bean (Vicia faba) cultivars following infection by the necrotrophic fungus Botrytis fabae. The plant pathology journal, 30(4), 355-366.‌
  9. Figueiredo, A., Monteiro, F., Fortes, A. M., Bonow-Rex, M., Zyprian, E., Sousa, L. & Pais, M. S. (2012). Cultivar-specific kinetics of gene induction during downy mildew early infection in grapevine. Functional and Integrative Genomics, 12(2), 379-386.
  10. Gill, S. S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930.‌
  11. Giannopolitis, C. N. & Reis, S. K. (1997). Superoxide dismutase I. Occurrence in higher plants. Plant Physiology, 59, 309-314.
  12. Grigolli, J. F. J., Kubota, M. M., Alves, D. P., Rodrigues, G. B., Cardoso, C. R., Silva, D. J. H. D. & Mizubuti, E. S. G. (2011). Characterization of tomato accessions for resistance to early blight. Crop Breeding and Applied Biotechnology, 11(2), 174-180.
  13. Hajianfar, R. & Zarbakhsh, A. (2006). Evaluation of reaction of some cultivars and tomato genotypes to Alternaria tenuissima the causal agent of ring spot. Journal Agriculture Science, 4(13), 61-74. (in Farsi)
  14. Hameed, A., Akhtar, K. P., Saleem, M. Y. & Asghar, M. (2010). Correlative evidence for peroxidase involvement in disease resistance against Alternaria leaf blight of tomato. Acta Physiologiae Plantarum, 32(6), 1171-1176.‌
  15. Jain, D. & Khurana, J. P. (2018). Role of Pathogenesis-Related (PR) proteins in plant defense mechanism. In Molecular Aspects of Plant-Pathogen Interaction (pp. 265-281). Springer, Singapore.‌
  16. Joshi, R. K., Megha, S., Rahman, M. H., Basu, U. & Kav, N. N. (2016). A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq. Gene, 590(1), 57-67.
  17. Lin, C. C. & Kao, C. H. (1999). NaCl induced changes in ionically bound peroxidase activity in roots of rice seedlings. Plant and Soil, 216(1), 147-153.
  18. Lubaina, A. S. & Murugan, K. (2012). Biochemical characterization of oxidative burst during interaction between sesame (Sesamum indicum L.) in response to Alternaria sesami. In Prospects in Bioscience: Addressing the Issues (pp. 243-250). Springer, India.
  19. Mandal, S., Mitra, A. & Mallick, N. (2008). Biochemical characterization of oxidative burst during interaction between Solanum lycopersicum and Fusarium oxysporum f. sp. lycopersici. Physiological and Molecular Plant Pathology, 72(1), 56-61.‌
  20. Martinez, B., Bernal, A., Perez, S. & Muniz, Y. (2002). Pathogenic variability of Alternaria solani Sor. isolates. Revista de Protection Vegetal, 17(1), 45-53.
  21. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410.‌
  22. Meena, M., Zehra, A., Dubey, M. K., Aamir, M., Gupta, V. K. & Upadhyay, R. S. (2016)ComparativeEvaluation of Biochemical Changes in Tomato(Lycopersicon esculentum Mill.)Infected by Alternaria alternata and Its Toxic Metabolites(TeA, AOH, and AME). Front Plant Science, 7, 1408.
  23. Mukherjee, A. K., Horwitz, B. A., Gepstein, S. & Lev, S. (2009). A compatible interaction of Alternaria brassicicola with Arabidopsis thaliana ecotype DiG: evidence for a specific transcriptional signature. BMC Plant Biology, 9(1), 31-42.
  24. Nikraftar, F., Taheri, P., Rastegar, M. F. & Tarighi, S. (2013). Tomato partial resistance to Rhizoctonia solani involves antioxidative defense mechanisms. Physiological and Molecular Plant Pathology, 81, 74-83.‌
  25. Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), 45-51.
  26. Ray, S., Mondal, S., Chowdhury, S. & Kundu, S. (2015). Differential responses of resistant and susceptible tomato varieties to inoculation with Alternaria solani. Physiological and Molecular Plant Pathology, 90, 78-88.
  27. Salim, A. P., Saminaidu, K., Marimuthu, M., Perumal, Y., Rethinasamy, V., Palanisami, J. R. & Vadivel, K. (2011). Defense responses in tomato landrace and wild genotypes to early blight pathogen Alternaria solani infection and accumulation of pathogenesis-related proteins. Archives of Phytopathology and Plant Protection, 44(12), 1147-1164.
  28. Shahbazi, H., Aminian, H., Sahebani, N. & Halterman, D. A. (2010). Biochemical evaluation of resistance responses of potato to different isolates of Alternaria solani. Phytopathology, 100(5), 454-459.
  29. Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 1, 1-26.‌
  30. Shi, H., Cui, R., Hu, B., Wang, X., Zhang, S., Liu, R. & Dong, H. (2011). Overexpression of transcription factor AtMYB44 facilitates Botrytis infection in Arabidopsis. Physiological and Molecular Plant Pathology, 76(2), 90-95.‌
  31. Shinde, B. A., Dholakia, B. B., Hussain, K., Aharoni, A., Giri, A. P. & Kamble, A. C. (2018). WRKY1 acts as a key component improving resistance against Alternaria solani in wild tomato, Solanum arcanum Peralta. Plant Biotechnology Journal,‌ 16(8), 1502-1513
  32. Tang, Y., Kuang, J. F., Wang, F. Y., Chen, L., Hong, K. Q., Xiao, Y. Y.,and Chen, J. Y. (2013). Molecular characterization of PR and WRKY genes during SA-and MeJA-induced resistance against Colletotrichum musae in banana fruit. Postharvest Biology and Technology, 79, 62-68.
  33. Taheri, P., Irannejad, A., Goldani, M. & Tarighi, S. (2014). Oxidative burst and enzymatic antioxidant systems in rice plants during interaction with Alternaria alternata. European Journal of Plant Pathology, 140(4), 829-839.
  34. Upadhyay, P., Rai, A., Kumar, R., Singh, M. & Sinha, B. (2014). Differential expression of pathogenesis related protein genes in tomato during inoculation with Alternaria solani. Journal of Plant Pathology and Microbiology, 5(1), 752-753.
  35. Youssef, S. A., Tartoura, K. A. & Greash, A. G. (2018). Serratia proteamaculans mediated alteration of tomato defense system and growth parameters in response to early blight pathogen Alternaria solani infection, Physiological and Molecular Plant Pathology. (in Press)