Etiology of quick decline disease of citrus on Bakraee (Citrus sp.) rootstock in southern Kerman

Document Type : Research Paper

Authors

1 Assistant Professor, Plant Protection Department, South Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Jiroft, Iran

2 Assistant Professor, Department of Plant Protection, Faculty of Agriculture, University of Jiroft, Jiroft, Kerman, Iran

3 Associate Professor, Department of Plant Viruses, Iranian Research Institute of Plant Protection, AREEO, Tehran, Iran

4 Professor, University of Milan, Department of Agricultural and Environmental Sciences, Milan, Italy

Abstract

The emerged citrus quick decline disease has destroyed many of citrus plants grafted onto Bakraee rootstock in southern Kerman during recent years. Disease symptoms are included leaf wilting, root rot, and quick decline. In this project, the etiology of quick decline disease was studied. Symptomatic and asymptomatic plants were tested for the presence of plant pathogenic prokaryotes using PCR with universal and specific primers, and Miseq Illumina method. Furthermore, ELISA, RT-PCR, inoculation on index plants, and dsRNA extraction were used for detection of viruses and viroids in symptomatic and asymptomatic plants. The correlation between the presence of Tylenchulus semipenetrans, Phytophthora nicotiana, and quick decline disease was investigated by isolation and quantification of pathogens from root and rhizosphere of asymptomatic and infected plants. Overall, results indicated the association of Candidatus Liberibacter asiaticus with citrus (on Bakraee rootstock) quick decline disease in southern Kerman. In addition, drought and heat stresses and co-infection of the diseased plants by Ca. Phytoplasma aurantifolia, Phytophthora nicotiana, and Tylenchulus semipenetrans lead to severe symptoms of the disease and accelerated the decline of the infected plants.

Keywords


  1. Akinsanya, M. A., Goh, J. K., Lim, S. P. & Ting, A. S. (2015). Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology. Genom Data, 6, 159-163.
  2. Alhudaib, K., Arocha, Y., Wilson, M. and Jones, P. (2009). Molecular identification, potential vectors and alternative hosts of the phytoplasma associated with a lime decline disease in Saudi Arabia. Crop Protection, 28, 13-18.
  3. Ann, P. J., Ko, W. H. & Hong J. S. (2004). Interaction between Likubin bacterium and Phytophthora parasitica in citrus hosts. European Journal of Plant Pathology, 110, 1-6.
  4. BaniHashemian, S. M., Serra, P., Barbosa, C., Juárez, J., Aleza, P., Corvera, J., Lluch, A., Pina, J. & Duran-Vila, N. (2009). Effect of a field-source mixture of citrus viroids on the performance of 'Nules' clementine and 'Navelina' sweet orange trees grafted on Carrizo citrange. Plant Disease, 93, 699-707.
  5. Barthe, G. A., Ceccardi, T. L., Manjunath, K. L. & Derrick, K. S. (1998). Citrus psorosis virus: nucleotide sequencing of the coat protein gene and detection by hybridization and RT–PCR. Journal of General Virology, 79, 1531-1537.
  6. Bassanezi, R. B., Bergamin Filho, A., Amorim, L., Gimenes- Fernandes, N., Gottwald, T. R. & Bové, J. M. (2003). Spatial and temporal analyses of citrus sudden death as a tool to generate hypotheses concerning its etiology. Phytopathology, 93, 502-512.
  7. Ebadzadeh, H. R., Ahmadi, K., Mohammadnia Afroozi, S., Abbas Taghani, R., Abbasi, M. & Yari, S. 2017. Agricultural statistics 1395. (Vol. 3) Ministry of Jihad -e- Agriculture. Tehran, Iran.
  8. Francis, M. I., Szychowski, J. A. & Semancik, J. S. (1995). Structural sites specific to citrus viroid groups. Journal of General Virology, 76, 1081-1089.
  9. Golein, B., Bigonah, M., Azadvar, M. & Golmohammadi, M. (2012). Analysis of genetic relationship between ‘Bakraee’ (Citrus sp.) and some known Citrus genotypes through SSR and PCR-RFLP markers. Scientia Horticulturae, 148, 147-153.
  10. Graham, J. H. (1995). Root regeneration and tolerance of citrus rootstocks to root rot caused by Phytophthora nicotianae. Phytopathology, 85, 111-117.
  11. Graham, J. H., Johnson, E. G., Gottwald, T. R. & Irey, M. S. (2013). Presymptomatic fibrous root decline in citrus trees caused by huanglongbing and potential interaction with Phytophthora spp. Plant Disease, 97, 1195-1199.
  12. Graham, J. H., Timmer, L. W. & Dewdney, M. M. (2011). Florida citrus pest management guide: Phytophthora foot rot and root rot. University of Florida, IFAS Extension.
  13. Gundersen, D. E. & Lee, I. M. (1996). Ultrasensitive detection of phytoplasmas by nested PCR assays using two universal primer pairs. Phytopathology Mediterranean, 35, 144-151.
  14. Hocquellet, A., Bove, J. M. & Garnier, M. (1999). Isolation of DNA from the uncultured Candidatus Liberobacter species associated with citrus huanglongbing by RAPD. Current Microbiology, 38, 176-182.
  15. Hoffman, M. T., Doud, M. S., Williams, L., Zhang, M.-Q., Ding, F., Stover, E., Hall, D., Zhang, S., Jones, L., Gooch, M., Fleites, L., Dixon, W., Gabriel, D. & Duan, Y. P. (2013). Heat treatment eliminates ‘Candidatus Liberibacter asiaticus’ from infected citrus trees under controlled conditions. Phytopathology, 13, 15-22.
  16. Ippolito, A., Decicco, V., Cicco, E. & Salerno, M. (1990). Role of Phytophthora spp. in citrus decline in Apulia and Basilicata, Italy. Bulletin EPPO, 20 (1), 91-94.
  17. Izadpanah, K., Shafiee, V. & Pakniat, A. (2002). The status of Citrus tristeza virus in the Fars and Bushehr provinces of Iran. Fifteenth International Organization of Citrus Virologists Conference Proceedings.332-334.
  18. Jagoueix, S., Bove, J. M. & Garnier, M. (1996). PCR detection of two Candidatus Liberobacter species associated with greening disease of citrus. Molecular Cell Probes, 10, 1915-1917.
  19. Jordan, R. L. & Dodds, J. A. (1984). Double-stranded RNA in detection of diseases of known and unproven viral etiology. Acta Horticulturae, 164, 101-108.
  20. Le Roux, H. F., Pretorius, M. C. & Huisman, L. (2000). Citrus nematode IPM in southern Africa. Proceeding of the International Society of Citriculture, 2, 823-827.
  21. Levy, L. & Hadidi, A. (1993). Direct nucleotide sequencing of PCR amplified DNAs of the closely related viroids IIa and IIb (Cachexia). In: Proceeding of 12th Conference of International Organization of Citrus Virologists, 180-186.
  22. Louzada, E. S., Vazquez, O. E., Braswell, W. E., Yanev, G., Devanaboina, M. & Kunta, M. (2016). Distribution of 'Candidatus Liberibacter asiaticus' above and below ground in Texas citrus. Phytopathology, 106 (7), 702.
  23. Maccheroni, W. 1., Alegria, M.C., Greggio, C. C, Piazza, J.P., Kamla, R. F., Zacharias, P. R., Bar-Joseph, M., Kitajima, E. W., Assumpção, L. C., Camarotte, G., Cardozo. J., Casagrande, E. C., Ferrari, F., Franco, S. F., Giachetto, P. F., Girasol, A., Jordão, H. J., Silva, V. H., Souza, L. C., Aguilar-Vildoso, C. I., Zanca, A. S., Arruda, P., Kitajima, J. P., Reinach, F. C., Ferro, J. A. & da Silva A. C. (2005). Identification and genomic characterization of a new virus (Tymoviridae family) associated with citrus sudden death disease. Journal of Virology, 79, 3028-3037.
  24. Meena, A. K., Dutta, F., Marak, M. Ch. & Meena, R. K. (2018). Citrus decline. International Journal of Current Microbiology and Applied Sciences, 7(4), 2807-2815.
  25. Mori, H., Maruyama, F., kato, H., Toyoda, A., Dozono, A., Ohtsubo, y., Nagata,Y., Fjiyama, A., Tsuda, M. & Kurokawa, K. (2014). Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Research, 21, 217-227.
  26. Muyzer, G., Waal, E. C. D. & Uitierlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 695.
  27. Najafinia, M. & Azadvar, M. (2016). Citrus sudden decline disease in Iran. Indian Phytopathology, 69(4s), 41-43.
  28. Palacio, A. & Duran-Vila, N. (1999). Single-strand conformation polymorphism (SSCP) analysis as a tool for viroid characterization. Journal of Virological Methods, 77, 27-36.
  29. Pallas, V., Sanchez-Navarro, J. A., Mas, P., Cañizares, M. C., Aparicio, F. & Marcos, J. F. (1998). Molecular diagnostic techniques and their potential role in stone fruit certification schemes. Options Méditerranéennes, 19, 191-208.
  30. Philis, J. (1989). Yield loss assessment caused by the citrus nematode on Valencia orange in Cyprus. Nematologia Mediterranea, 17, 5-6.
  31. Roman, M. P. M., Cambra, J., Juárez, P., Moreno, N., Duran-Vila, F. A. O., Tanaka, E., Alves, E. W., Kitajima, P. T., Yamamoto, B., Bassanezi, D. C. J. Jr. Teixeira, A. J., Ayres, N., Gimenes-Fernandes, F., Rabenstein, L. F. & Bove, J. M. (2004). Sudden death of citrus: a graft-transmissible bud union disease. Plant Disease, 88, 453-467.
  32. Safdar, A., Javed, N., Khan S. A., Khan, H. U., Rehman, A. & Haq, I. U. (2010). Survey and investigation of different citrus growing areas for citrus sudden death syndrome. Pakestanian Jornal of Phytopathology, 22, 71-78.
  33. Schneider, B., Seemüller, E., Smart, C. D. & Kirkpatrick, B. C. (1995). Phylogenetic classification of plant pathogenic mycoplasmalike organisms or phytoplasmas. In: Razin, R. & Tully, J. G., (Eds.). Molecular and Diagnostic Procedures in Mycoplasmology, Vol. I., (pp. 369-380.) Academic Press, San Diego, CA, USA.
  34. Seriwastava, A. K. & Singh, S. (2009). Citrus decline: soil fertility and plant nutrition. Journal of Plant Nutrition, 32, 197-245.
  35. Spina, S., Coco, V., Gentile, A., Catara, A. & Cirvilleri, G. (2008). Association of Fusarium solani with rolabc and wild type Troyer citrange. Journal of Plant Pathology, 90 (3), 479-486.
  36. Tanha Maafi, Z. & Damadzadeh, M. (2008). Incidence and control of the citrus nematode, Tylenchulus semipenetrans Cobb, in the north of Iran. Nematology, 10, 113-122.
  37. Valverde, R. A. (1990). Analysis of double-stranded RNA for plant virus diagnosis. Plant Disease, 74, 255-258.
  38. Whitehead, A. G. & Hemming, J. R. (1965). A comparison of some quantitative methods of extracting some small vermiform nematodes from soil. Annals of Applied Biology, 55, 22-38.
  39. Wu J., Johnson, E. G., Bright, D. B., Gerberich, K. M. & Graham J. H. (2017). Interaction between Phytophthora nicotianae and Candidatus Liberibacter asiaticus damage to citrus fibrous roots. Journal of Citrus Pathology, 4(1), 1-7.
  40. Yokomi, R. K., Mello, A. F. S., Saponari, M. & Fletcher, J. (2008). Polymerase chain reaction based detection of Spiroplasma citri associated with citrus stubborn disease. Plant Disease, 92, 253-260.
  41. Yuan, X., Morano, L., Bromley, R., Spring-Pearson, S., Stouthamer, R. & Nunney, L. (2010). Multilocus sequence typing of Xylella fastidiosa causing Pierce’s disease and oleander leaf scorch in the United States. Phytopathology, 100, 601-611.
  42. Zhang, Y. P., Uyemoto, J. K. & Kirkpatrick, B. C. (1998). A small-scale procedure for extracting nucleic acids from woody plants infected with various phytopathogens for PCR assay. Journal of Virological Methods, 71, 45-50.