The effect of biolog siderophoric on biological parameters of Tetranychus urticae at different temperatures

Document Type : Research Paper

Authors

1 Former M. Sc. Student, Department of Plant Protection, College of Agriculture, Vali-e-Asr University of Rafsanjan, Iran

2 Associate Professor, Department of Plant Protection, College of Agriculture, Vali-e-Asr University of Rafsanjan, Iran

3 Assistant Professor, Department of Genetics & Crop Production, College of Agriculture, Vali-e-Asr University of Rafsanjan, Iran

Abstract

In this paper, developmental time, survival rate, and reproduction of Tetranychus urticae Koch on common bean under the influence of Biolog siderophoric (an induced resistance compound in plants) were investigated. The laboratory conditions in this study were 75±10% R.H. and 16L: 8D at three constant temperatures (25±1, 30±1 and 35±1 °C). The soil of each pot received 0.2 ml of Biolog siderophoric diluted in 100 ml water. Leave discs of the treated plants were collected after 48 h for the experiments.Results showed that total developmental time of T. urticae was 35.87± 0.02, 56.45±0.05, and 30.23±0.02 days at 25, 30 and 35 °C, respectively. Developmental time of different stages increased as the temperature elevated from 25 to 30 °C, but decreased as the temperature was raised from 30 to 35 °C. The intrinsic rate of increase (r) was 0.16±0.0007, 0.10±0.0006, and 0.18±0.0007 day-1, at 25, 30 and 35°C, respectively. There was a significant difference among the intrinsic rate of increase at the three temperatures. The net reproduction rate (R0) was 48.25±0.72, 25.76±0.43 and 39.42±0.49 offspring at the mentioned temperatures. There was a significant difference between the net reproduction rates at the three temperatures. Our results showed that biolog siderophoric had the best effect on reducing the population of T. urticae at 30 °C, due to the lowest intrinsic rate of increase and the most longevity occurred in this temperature.

Keywords


  1. Alcazar, R. & Parker, J. E. (2011). The impact of temperature on balancing immune responsiveness and growth in Arabidopsis. Trends in Plant Science, 16, 666-675.
  2. Araujo, L., Silva Bispo, W. M., Rios, V. S., Fernandes, S. A. & Rodrigues, F. A. (2015). Induction of the phenylpropanoid pathway by acibenzolar-S_methyl and potassium phosphate increases mango resistance to Ceratocystis finbriata infection. Plant Disease, 99(4), 447-459.
  3. Ataide, L. M. S., Pappas, M. L., Schimmel, B. C. J., Lopez-Orenes, A., Alba, J. M., Duarte, M. V. A., Pallini, A., Schuurink, R. & Kant, M. R. (2016). Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring. Plant Science, 252, 300-310.
  4. Buonaurio, R., Iriti, M. & Romanazzi, G. (2009). Induced resistance to plant diseases caused by oomycetes and fungi. Petria, 19(3), 130-148.
  5. Carstens, M., McCrindle, T. K., Adams, N., Diener, A., Guzha, D. T., Murray, S. L., Parker, J. E, Denby, K. J. & Ingle, R. A.(2014). Increased resistance to biotrophic pathogens in the Arabidopsis constitutive induced resistance 1 mutant is EDS1 and PAD4-dependent and modulated by environmental temperature, Plos One, 9(10), 1-8.
  6. Chi, H. (2016). TWOSEX_MSChart: a computer program for the age-stage, two-sex life table analysis. URL http:// 140.120.197.173/ecology/Download/TWOSEX_MSChart.rar. (accessed February 2016)
  7. Cohen, Y. (2000). Methods for protecting plants from fungal infection. United States Patent 6,075,051.
  8. Cohen, Y. (2001). The BABA story of induced resistance. Phytoparasitica, 29, 375-378.
  9. Cohen, Y. (2002) 5-aminobutyric acid-induced resistance against plant pathogens. Plant Disease Journal, 85, 448-457.
  10. Choh, Y., Ozawa, R. & Takabayashi, J. (2004). Effect of exogenous jasmonic acid and benzo (1,2,3) thiadiazole-7-carbothioicacid S-methylester (BTH), a functional analogue of salicylic acid, on the egg production of a herbivorous mite Tetranychus urticae (Acari: Tetranychidae). Applied Entomology and Zoology, 39(2), 311-314.
  11. Dahmardeh, A., Latifi, M. & Saberi Riseh, R. (2018). Effect of induced resistance in bean plants on Tetranychus urticae life table parameters. Systematic and Applied Acarology, 23(8), 1627-1640.
  12. De Jong C. F., Takken, F. L., Cai, X., de Wit P. J. & Joosten, M. H. (2002). Attenuation of Cf-mediated defense responses at elevated temperatures correlates with a decrease in elicitor-binding site. Molecular Plant Microbe Interactions, 15, 1040-1049.
  13. Dermauw, W., Wybouw, N., Rombauts, S., Menten, B., Vontas, J., Grbic, M., Clark, R. M., Feyereisen, R. & Van Leeuwen, T. (2013). A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. In: Proceedings of the National Academy of Sciences, 110(2), E113-E122.
  14. Dias, P. A. S., Sampaio, M. V., Rodrigues, M. P., Korndorfer, A. P., Oliveira, R. S., Ferreira, S. E. & Korndorfer, G. H. (2014). Induction of resistance by silicon in wheat plants to alate and apterous morphs of Sitobion avenae (Hemiptera: Aphididae). Environmental Entomology, 43(4), 949-956.
  15. Doares, SH., Narvaez-Vasquez, J., Conconi, A. & Ryan, C. A. (1995). Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiology, 108, 1741-46.
  16. Edreva, A. (2004). A novel strategy for plant protection: Induced resistance. Journal of Cell and Molecular Biology. 3, 61- 69.
  17. Farouk, S. & Osman, M. A. (2011). The effect of plant defense elicitors on common bean (Phaseolus vulgaris L.) growth and yield in absence or presence of spider mite (Tetranychus urticae Koch) infestation. Journal of Stress Physiology and Biochemistry, 7(3), 5-22.
  18. Frel, A., Gu, H., Cardona, C. & Dorn, S. (2003). Antixenosis and antibiosis of common beans to Thrips palmi. Journal of Economic Entomology, 93, 1577-1584.
  19. Garrett, K. A., Dendy, S. P., Frank, E. E. Rouse, M. N. & Travers, S. E. (2006). Climate change effects on plant disease: Genomes to ecosystems. Annual Review of Phytopathology, 44, 489-509.
  20. Gomez-Vasquez, R., Day, R., Buschmann, H., Randles, S., Beeching, J. R. & Cooper, R. M. (2004). Phenylpropanoids, phenylalanine ammonia lyase and peroxidases in elicitor-challenged cassava (Maninhot esculenta) suspension cells and leaves. Annals of Botany, 94(1), 87-97.
  21. Gomes, F. B., Moraes, J. C. D., Santos, C. D. & Goussain, M. M. (2005). Resistance induction in wheat plants by silicon and aphids. Science Agriculture, 62, 547-551.
  22. Goussain, M. M., Prado, E. & Moraes, J. C. (2005). Effect of silicon applied to wheat plants on the biology and probing behaviour of greenbug Schizaphis graminum (Rond.) (Hemiptera: Aphididae). Crop Protection, 34, 807-813.
  23. Han, Y., Lei, W., Wen, L. & Hou, M. (2015). Silicon-mediated resistance in a susceptible rice variety to the rice leaf folder, Cnaphalocrocis medinalis Guenee (Lepidoptera: Pyralidae). PlosOne, 10(4), 1-13.
  24. Hwang, C. F., Bhakta, A. V., Truesdell, G. M., Pudlo, W. M. & Williamson, V. M. (2000). Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. Plant Cell, 12, 1319-1329.
  25. Jablonska, B., Ammiraju, J. S., Bhattarai, K. K., Mantelin, S., Martinez de Ilarduya, O., Roberts, P. A. & Kaloshian, I. (2007). The Mi gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-I. Plant Physiology, 143, 1044-1054.
  26. Jha, R., Chi, H. & Tang, L. Ch. (2012). A comparison of artificial diet and hybrid sweet corn for the rearing of Helicoverpa armigera (lepidoptera: Noctuidae) based on life table characteristics. Environmental Entomology, 41, 30-39.
  27. Khodayari, S. & Abedini, F. (2018). Systemic induced resistance (SIR) in zucchini by foliar spray of fosfalim-K against two spotted spider mite, Tetranychus urticae Koch. Plant Protection, 40(4), 1-13 (In Farsi)
  28. Li, C., Williams, M. M., Loh, Y. T., Lee, G. I. & Howe, A. (2002). Resistance of cultivated tomato to cell content-feeding herbivores is regulated by the octadecanoid-sig-naling pathway. Plant Physiology, 130, 494-503.
  29. Malamy, J., Hennig J. & Klessig F. (1992). Temperature dependent induction of salicylic acid and its conjugate during the resistance response to tobacco mosaic virus infection. The Plant Cell, American Society of Plant Physiologists, 4, 359-366.
  30. Massey, F., Ennos, A. R. & Hartley, E. S. (2006). Silica in grasses as a defence against insect herbivores: contrasting effects on folivores and a phloem feeder. Animal Ecology, 75, 597-603.
  31. Menzel, T. R., Weldegergis, T., David, A., Boland, W., Gols, R., van Loon, J. J. A. & Dicke, M. (2014). Synergism in the effect of prior jasmonic acid application on herbivore-induced volatile emission by lima bean plants: transcription of a monoterpene synthase gene and volatile emission. Journal of Experimental Botany, 66(17), 4821-4831.
  32. Mohamadi, P., Razmjou, J., Naseri, B. & Hassanpour, M. (2017). Population growth parameters of Tuta absoluta (Lepidoptera: Gelechiidae) on tomato plant using organic substrate and biofertilizers. Journal of Insect Science,17(2), 36.
  33. Mohamed, H. I., Haleem, A. B. D. E. L., Mohammed, M. A. & Mogazy, A. M. (2016). Effects of plant defense elicitors on soybean (Glycine max L.) growth, photosynthetic pigments, osmolyts and lipid components in response to cotton worm (Spodoptera littoralis) infestation. Bangladesh Journal of Botany, 45(3), 597-604.
  34. Motahari, M., Kheradmand, K., Roustaee, A. M. & Talebi, A. A. (2013). Study of cucumber plant nutrition effect by different levels of potassium on biological parameters and life table of Tetranychus urticae Koch (Acari: Tetranychidae). Journal of Entomological Research, 6, 81-95.
  35. Omer, A. D., Thaler, J., Granett, J. & Karban, R. (2000). Jasmonic acid induced resistance in grapevines to a root and leaf feeder. Journal of Economic Entomology, 93, 840-845.
  36. Pascual, S., Nombela, G., Aviles, M. & Muniz, M. (2003). Induced resistance in tomato to whitefly Bemisia tabaci by Bion. Integrated Control in Protected Crops, Mediterranean Climate, 26(10), 61-64.
  37. Peng, J., Deng, X., Huang, J., Jia, S., Miao, X. & Huang, Y. (2004). Role of salicylic acid in tomato defense against cotton bollworm, Helicoverpa armigera Hubner. Zeitschrift fur Naturforschung C., 59, 856-62.
  38. Ranger, C. M., Singh, A. P., Frantz, J. M., Canas, L., Locke, J. C., Reding, M. E. & Vorsa, N. (2009) .Influence of silicon on resistance of Zinnia elegans to Myzus persicae (Hemiptera: Aphididae). Environmental Entomology, 38(1), 129-136.
  39. Samuel, G. (1931). Some experiments on inoculating methods with plant viruses, and on local lesions. Annals of Applied Biology, 18, 494-507.
  40. Schonbek, M. (1995). The Fourier splitting method. Advances in geometric Analysis and Continum. Mechanics, 6, 125-134.
  41. Smart, L. E., Martin, J. L., Limpalaer, M., Bruce, T. J. A. & Pickett, J. A. (2013). Responses of herbivore and predatory mites to tomato plants exposed to jasmonic acid seed treatment. Journal of Chemical Ecology, 39, 1297-1300.
  42. Tan, C. W., Chiang, S. Y., Ravuiwasa, K. T., Yadav, J. & Hwang S. Y. (2012). Jasmonate-induced defenses in tomato against Helicoverpa armigera depend in part on nutrient availability, but artificial induction via methyl jasmonate does not. Arthropod-Plant Interactions, 10, 1-4.
  43. Thaler, J. S., Olsen, E. L. & Kaplan, I. (2015). Jasmonate-induced plant defenses and prey availability impact the preference and performance of an omnivorous stink bug, Podisus maculiventris. Arthropod-Plant Interactions, 9(2), 141-148.
  44. Tiwari, S., Meyer, W. L. & Stelinski, L. L. (2013). Induced resistance against asian citrus psyllid, Diaphornia citri, by B-aminobutyric acid in citrus. Bulletin of Entomological Research, 1-9.
  45. Venter, E. & Mansoor, C. (2012). Potassium phosphate induces tolerance against the russian wheat aphid Diuraphis noxia (Homoptera: Aphididae) in wheat. Crop Protection, 61, 43-50.
  46. Vilela, M., Moraes, J. C., Alves, E., Santos-Civipanes, T. M. & Santos, F. A. (2014). Induced resistance to Diatrae saccharalis (Lepidoptera: Crambidae) via silicon application in sugarcane. Colombiana de Entomologia, 40, 44-48.
  47. Wang Y., Bao Z., Zhu Y. & Hua, J. (2009). Analysis of temperature modulation of plant defense against biotrophic microbes. The American Phytopathological Society, 22(5), 498-506.
  48. War, A. R., Paulraj, M. G., War, M. Y. & Ignacimuthu, S. (2011a) Herbivore- and elicitor-induced resistance in groundnut to asian armyworm, spodoptera litura (Fab.) (Lepidoptera: Noctuidae).Plant Signaling and Behavior, 6(11), 1769-1777.
  49. War, A. R., Paulraj, M. G., War, M. Y. & Ignacimuthu, S. (2011b). Jasmonic acid-mediated-induced resistance in groundnut (Arachis hypogaea L.) against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Journal of Plant Growth Regulation, 30(4), 512-523.
  50. Warabieda, W., Miszczak, A. & Olszak, R. W. (2005). The influence of methyl jasmonate (JA-Me) and beta-glucosidase on induction of resistance mechanisms of strawberry against two-spotted spider mite (Tetranychus urticae Koch). Communications in Agricultural and Applied Biological Sciences, 70, 829-836.
  51. Warabieda, W. & Oszak, R. (2010). Effect of exogenous methyl jasmonate on numerical growth of the population of the two-spotted spider mite (Tetranychus urticae Koch.) on strawberry plants and young apple trees. Journal of Plant Protection Research, 50(4), 541-544.
  52. Whitham, S., McCormick, S. & Baker, B. (1996). The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. In: Proceedings of the National Academy of Sciences of the United States of America, 93, 8776-8781.
  53. Wolf, J. M.van der, Michta, A., Zouwen, P. S.van der, Boer, W. J. de., Davelaar, E. & Stevens, L. H. (2012). Seed and leaf treatments with natural compounds to induce resistance against Peronospora parasitica in Brassica oleracea. Crop Protection, 35, 78-84.
  54. Worrall, D., Holroyd, G. F., Moore, J. P., Glowacz, M., Croft, P., Taylor, J., Paul, N. D. & Roberts, M. R. (2012). Treating seeds with activators of plant defence generates long losting priming of resistance to pests and pathogens. New Phytologist, 193, 770-778.
  55. Xiao, S., brown, S., Patrick, E., Brearley, C. & Turner, J. G. (2003). Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid-dependent amplification circuit is required for hypersensitive call death. Plant Cell, 15, 33-45.
  56. Yalpani, N., Silverman, P., Wilson, T. M. A., Kleier, D. A. & Raskin, I. (1991). Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell, 3, 809-818.
  57. Yang, S. & Hua, J. (2004) A haplotype-specific resistance gene regulated by BONZAII mediates temperature-dependent growth contro in Arabidopsis. Plant Cell, 16, 1060-1071.