Biodiversity of Phytoseiid mites (Acari: Mesostigmata: Phytoseiidae) in Sistan region, Iran

Document Type : Research Paper


1 Ph.D. student , Department of Plant Protection, College of Agriculture, university of Zabol, Zabol, Iran.

2 Professor. Department of Plant Protection, College of Agriculture, university of Zabol, Zabol, Iran.

3 Professor, Department of Plant Protection, Faculty of Agriculture, University of Tehran, Karaj, Iran.

4 Assistant Professor, Department of Agricultural Zoology, Iranian Research Institute of Plant Protection, Tehran, Iran.

5 Professor, Department of Plant Protection, College of Agriculture, university of Zabol, Zabol, Iran.


Mites of the family Phytoseiidae are all predatory species on phytophagous mites and small insects like thrips and whiteflies, on commercial plants and the wild vegetation. Several species are biological control agents for the control of pests in both open and protected crops all around the world. In 2019, biodiversity of phytoseiid mites (Acari: Mesostigmata: Phytoseiidae) were studied in the Sistan region, north of Sistan and Baluchistan Province, Iran. Samples were collected randomly in different seasons and in equal samples and distances from grape and tamarix trees from three cities of Zahak, Jazinak and Nimrooz. In this research, eight species belonging to four genera were collected and identified. Among them one species was introduced for the first time in the world and eight species were identified as the new records for mite fauna in Sistan and Baluchistan Province. Biodiversity indexes based on species richness were calculated using standard formulas and Ecological Methodology software. Data processing was performed using SAS software. The results of the study showed that in vineyard Neoseiulus barkeri (36%), Neoseiulus paspalivorua (17%) and Amblyseius rademacheri (16%), were the most abundant species, respectively. Paragigagnathus sistaniensis was the most aboundant species (77%) on tamarix trees. The analysis of variance indicated that the both factors of season and the interaction between season and habitat did not differ significantly, but the diversity indices of the two habitats (grape and tamarix) showed a significant difference. Accordingly, the vineyards had the highest species richness of Margalef (0.95) and Shannon-Wiener’s (1.70) .


  1. Arjmandi-Nezhad, A., Kreiter, S., Saboori, A. and Ravan, S. ( 2022). A new species of Paragigagnathus Amitai & Grinberg (Mesostigmata: Phytoseiidae) from Iran. Acarologia, 62(1), 48-57. doi: 10.24349/8dra-mc90.
    1. Boller, E. F. (1984). Eine einfache ausschwemm methode zur schellen erfassung von raumilben, trips und anderen kleinarthopoden im weinbau. Obstund Weinbau, 120, 249-255.
    2. Burgio, G., Marchesini, E., Reggiani, N., Montepaone, G., Schiatti, P. and Sommagio, D. (2016). Habitat management of organic vineyard in northern Italy: the role of cover plants management on arthropod functional biodiversity. Bulletin of Entomological Resaerch, 106, 759–768. doi: 10.1017/S0007485316000493.
    3. Castro, T. M. and Moraes, G. J. De. (2010). Diversity of phytoseiid mites (Acari: Mesostigmata: Phytoseiidae) in the Atlantic forest of São Paulo. Systematics and Biodiversity, 8(2), 301-307.
    4. Chant, D. A. and Mc Murtry, J. A. (1994). A review of the subfamilies Phytoseiinae and Typhlodrominae (Acari: Phytoseiidae). International Journal of Acarology, 20(4), 223-310. doi:10.1080/01647959408684022.
    5. Chant, D. A. and Mc Murtry, J. A. (2007). Illustrated keys and diagnoses for the genera and subgenera of the Phytoseiidae of the world (Acari: Mesostigmata). Indira Publishing House, West Bloomfield, 219 pp.
    6. De Villiers, M. and Pringle K. L. (2011). The presence of Tetranychus urticae (Acari: Tetranychidae) and its predators on plants in the ground cover in commercially treated vineyards. Experimental and Applied Acarology, 53, 121–137. doi: 10.1007/s10493-010-9391-7.
    7. Demite, P. R., Mc Murtry, J. A. and Moraes, G. J. de. (2014). Phytoseiidae Database: a website for taxonomic and distributional information on phytoseiid mites (Acari). Zootaxa, 3795 (5), 571-577. doi: 10.11646/zootaxa.3795.5.6.
    8. Demite, P. R., Moraes, G. J., Mc Murtry, J. A., Denmark, H. A. and Castilho, R. C. (2021). Phytoseiidae Database. Available from: (last access 25/III/2021).
    9. Ejtehadi, H., Sepehry, A. and Akkafi, H. R. (2009). Method of measuring biodiversity. Ferdowsi University of Mashhad Publication, 226 pp. (In Farsi).
    10. Funayama, K. and Sonoda, S. (2014). Plantago asiatic groundcover supports Amblyseius tsugawai (Acari: Phytoseiidae) populations in apple orchards. Applied Entomology and Zoology, 49, 607–611. doi: 10.1007/s13355-014-0280-0.
    11. Gerson, U., Smiley, R. L. and Ochoa, R. (2003). Mites (Acari) for Pest Control. Oxford: Blackwell Science, 539 pp.
    12. Jørgensen, S. , Costanza R. and Fuliu, X. U. (2005). Handbook of Ecological Indicators for Assessment of Ecosystem Health, CRC press, 233 pp.
    13. Karban, R., English-loeb, G., Walker, M. A. and Thaler, J. (1995). Abundance of phytoseiid mites on Vitis species: effects of leaf hairs, domatia, prey abundance and plant phylogeny. Experimental and Applied Acarology, 19, 189-197.
    14. Kostiainen, T. S. and Hoy, M. A. (1996). The Phytoseiidae as biological control agents of pest mites and insects. A bibiliography (1960-1994). Monograph 17. University of Florida, IFAS Publication: Florida Agricultural Experiment Station, FL., 355 pp.
    15. Krantz, G. W. and Walter, D. E. (2009). A manual of acarology (3th ed.). Texas Tech University Press, Lubbock, USA, 807 pp.
    16. Krebs, C. J. (2001). Ecological Methodology, University of British Colombia, Harper Collius Publication, 432 pp.
    17. Kreiter, S., Tixier, M-S., Auger, P., Muckensturm, N., Sentenac, G., Doublet, B. and Weber, M. (2000). Phytoseiid mites of vineyards in France (Acari: Phytoseiidae). Acarologia, 41(1), 77-96.
    18. Mailloux, J., Le Bellec, F., Kreiter, S., Tixier, M-S. and Dubois, P. (2010). Influence of groundcover management on diversity and density of phytoseiid mites (Acari: Phytoseiidae) in Guadeloupian citrus orchards. Experimental and Applied Acarology, 52, 275–290. doi: 10.1007/s10493-010-9367-7.
    19. Margalef, R. (1957). Diversidad de species en las commundades naturals. Publications del instituto de biological aplicatae, 6, 59-72.
    20. Markó, V., Jenser, G., Mihályi, K., Hegyi, T. and Balázs, K. (2012). Flowers for better pest control? Effects of apple orchard groundcover management on mites (Acari), leafminers (Lepidoptera, Scitellidae), and fruit pests. Biocontrol Science and Technology, 22, 39–60. doi: 10.1080/09583157.2011.642337.
    21. Mc Murtry, J. A. and Croft, B. A. (1997). Life-styles of phytoseiid mites and their roles in biological control. Annual Review of Entomology, 42, 291-321.
    22. Mc Murtry, J. A., Moraes, G. J. de. and Sourasso, N. F. (2013). Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic and Applied Acarology, 18, 297–320. doi: 10.11158/saa.18.4.1.
    23. Mirhasani, M. , Rostami, N., Bazgir, M. and Tavakoli, M. (2021). The role of biological windbreak in the creation of microclimate in arid areas of dehloran, Ilam. Geography and Sustainability of Environment, 37, 73-90.
    24. Muma, M. H. (1961). The influence of cover crop cultivation on population of injurious insect and mites in Florida citrus groves. Florida Entomologist, 44, 61-68.
    25. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403,853–858. doi: 10.1038/35002501.
    26. Omidi, J., Hadizadeh, A. and Mohammadi Sharif, M. (2016). Species diversity of phytoseiid mites on different ecosystems in Sari district. Journal of Agroecology, 7(4), 461-472. (In Farsi).
    27. Perez-Velazquez, D., Castano-Meneses, A., Callejas-Chavero, G. A. and Palacios-Vargas, J. (2011). Mesostigmatid mite (Acari: Mesostigmata) diversity and abundance in two sites in Pedregal de San Angel Ecological Reserve, Distrito Federal, Mexico. Zoosymposia, 6, 255-259.
    28. Pielou, e. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144.
  2. Power, A. G. (2010). Ecosystem services and agriculture: tradeoffs and synergies. Philosophical Transactions of the Royal Society Biological Sciences, 365, 2959–2971. doi: 10.1098/rstb.2010.0143.
  3. Price, P. W. (1997). Insect Ecology. John Wiley and Sons Inc. New York, 874 pp.
  4. Rahmani, H., Saboori, A. and Hajiqanbar, H. (2012) Acarology (Morphology, Biology and systematic). University of Zanjan Press, Zanjan, 569 pp. (In Farsi).
    1. Ragusa, S. and Ciulla, A. M. (1989). Phytoseiid mites associated with vines in various sicilian provinces. In: Proceedings of the CEC/IOBC international symposium on Plant-protection problems and prospects of integrated control in viticulture, 6-9 June, Lisboa-Vila Real, Portugal, pp. 197-202.
    2. Sahraoui, H., Kreiter, S., Lebdi-Grissa, K. and Tixier, M-S. (2016). Sustainable weed management and predatory mite (Acari: Phytoseiidae) dynamics in Tunisian citrus orchards. Acarologia, 56, 517–532. doi: 10.1051/acarologia/20162240.
    3. SAS Institute. (2003). SAS ⁄ STAT User’s Guide, Version 9.1. Cary: SAS Institute, NC, USA.
    4. Shannon, C. E. and Wiener, W. (1949). The mathematical theory of communication. University of Illinois Press, 35 pp.
    5. Simpson, E. H. (1949). Measurement of diversity. Nature, 12, 1-20.
    6. Southwood, T. R. E. and Henderson, P. A. (2000). Ecological Methods. 3rd edn. Oxford, UK: Blackwell science, 593 pp.
    7. Tixier, M-S. (2018). Predatory mites (Acari: Phytoseiidae) in agro-ecosystems and conservation biological control: A review and explorative approach for forecasting plant-predatory mite interactions and mite dispersal. Frontiers in Ecology and Evolution, 6(192), 1-21. doi:10.3389/fevo.2018.00192.