c3518cb17d976b8

برهم‌کنش زنبور گرده‌افشان انجیر (Blastophaga psenes) و نماتد گل‌آذین انجیر (Schistonchus caprifici) در ژنوتیپ‌های برانجیر استان فارس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش تحقیقات گیاه‌پزشکی، مرکز تحقیقات و آموزش کشاورزی کهگیلویه و بویر احمد، سازمان تحقیقات، آموزش و ترویج کشاورزی، یاسوج، ایران

2 مؤسسه تحقیقات علوم باغبانی ، سازمان تحقیقات، آموزش و ترویج کشاورزی کرج، ایران

3 پژوهشکده میوه‌های معتدله و سردسیری ، مؤسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

4 بخش تحقیقات گیاه‌پزشکی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کهگیلویه و بویراحمد، سازمان تحقیقات، آموزش و ترویج کشاورزی،

چکیده

جمعیت­هایی از نماتد Schistonchus caprifici به گلچه­های درختان انجیر حمله می­کنند. زنبور Blastophaga psenes (L.)   نیز نقش اصلی در گرده­افشانی انجیر خوراکی دارد. مجموعاً 175 نمونه از گل­آذین بهاره (زودرس، میان­رس و دیررس) ژنوتیپ­های­های مختلف برانجیر از مناطق مختلف شهرستان­های استهبان، ایج، خفر، سروستان، کوار و شیراز در استان فارس در فصل بهار طی سال­های 1401 تا 1402 نمونه­برداری شد. گل­آذین­های جمع­آوری شده به تفکیک مناطق و ژنوتیپ­های مختلف، پس از ضدعفونی سطحی با اسکالپل باز و قطعه ‌قطعه شدند. استخراج، شناسایی و تعیین تراکم جمعیت طبق روش­های متداول نماتدشناسی انجام و جمعیت نماتدهای استخراجی در حجم معینی از سوسپانسیون حاوی نماتد با اسلاید شمارش تعیین شد. گل­آذین­های انجیر ژنوتیپ­های مختلف برانجیر برش زده شدند و تعداد زنبورها در هر میوه زیر استریومیکرسکپ شمارش و ثبت شد. شاخص­های همبستگی بین جمعیت زنبور گرده‌افشان و نماتد محاسبه و تحلیل عاملی به‌منظور تشخیص عامل‌های مشاهده ‌ناپذیر ترکیبی مؤثر بر همبستگی گونه­ها بر پایه مجموعه شاخص­های مشاهده‌پذیر انجام شد. برای تفکیک ژنوتیپ­های برتر بر اساس پتانسیل همبستگی جمعیت­های زنبور گرده­افشان و نماتد میوه انجیر از روش تحلیل خوشه‏ای استفاده شد. نماتدهای استخراج شده از گل­آذین­های بهاره مربوط به نمونه­های هر دو سال این مطالعه با استفاده از خصوصیات ریخت شناسی و ریخت­سنجی، گونه S. caprifici تشخیص داده شد. پایین­ترین رتبه همبستگی مشاهده شده بین جمعیت زنبور و نماتد در ژنوتیپ های برانجیر نوک قرمزی، حاج محمدعلی و شاه­انجیری دانه سفید احتمالا حاکی از تاثیر نه چندان معنی دار رابطه زنبور و نماتد روی کارایی گرده­افشانی در این ژنوتیپ­ها می باشد. متوسط شاخص­های میزان آلودگی و آلودگی نسبی مورد انتظار، تراکم متوسط جمعیت، تراکم نسبی، درجه همپوشانی اوکیای و شاخص جاکارد زنبور و نماتد به ترتیب 27، 17/50، 50/248، 17/18، 74/0، 26/0، 67/33، 33/27، 73/1، 85/3، 26/0، 40/0، 36/0 و 62/0 بود. در هر ژنوتیپ برانجیر که میزان همپوشانی دو گونه بالاتر باشد، از کارایی گرده­افشانی کاسته می­شود زیرا نماتد نه تنها از زنبور به عنوان یک عامل همسفری استفاده می­کند بلکه تا حدی به عنوان پارازیت زنبور گرده­افشان نیز عمل می کند. تخمین تعداد زنبور B. psenes و نماتد S. caprifici در گل­آذین­های برداشت شده از نژادگان مختلف به­منظور شناسایی نژادگان با پتانسیل بالای کاپریفیکاسیون (بردهی) و آلودگی پایین به نماتد مفید بوده و می تواند برای تولیدکنندگان انجیر یا بهره‌برداری در برنامه‌های به­نژادی مورد توجه قرار گیرد.  

کلیدواژه‌ها


عنوان مقاله [English]

Interaction of pollinator fig wasp (Blastophaga psenes) and caprifig syconium nematode (Schistonchus caprifici) in caprifig genotypes of Fars province

نویسندگان [English]

  • Hadi Karimipour Fard 1
  • Hamid Zare 2
  • Masoud Latifian 3
  • Nazanin Doryanizadeh 4
1 Plant Protection Research Department,, Kohgiluyeh and Boyer-Ahmad Agricultural and Natural Resources Research and Education Center, AREEO, Yasuj, Iran
2 Horticultural Science Research Institute,, AREEO, Karaj, Iran
3 Temperate Fruits Research Center, Horticultural Sciences Research Institute, AREEO, Karaj, Iran
4 Plant Protection Research Department, Kohgiluyeh and Boyer-Ahmad Agricultural and Natural Resources Research and Education Center, AREEO, Yasuj, Iran
چکیده [English]

Populations of the caprifig syconium nematode (Schistonchus caprifici) invade the flowers of fig trees. Fig wasp Blastophaga psenes (L.) also plays a major role in the caprification of edible figs. To investigate the interaction between pollinator fig wasp and caprifig syconium nematode in caprifig genotypes of Fars province, a total of 175 profichi caprifig syconium samples (early, mid-early, and late-early fruits) of 43 genotypes of caprifig from Estahban, Ij, Khafr, Sarvestan, Kavar and Shiraz counties in Fars province were collected during the spring of 2022 to 2023. The samples were assessed based on regions and genotypes, separately. Disinfected profichi syconia surfaces were cut into pieces with a scalpel. Extraction, identification, and population density determination were done according to the routine procedure in nematology laboratories, and the population of nematodes in a certain volume of extracted suspension was further determined using a counting slide. The nematodes species, S. caprifici, was identified by its morphometric and morphological characteristics. The number of fig wasps in each syconium of the caprifig genotypes was also counted under a stereo microscope. Relation indices between the pollinator wasp and caprifig syconium nematode populations were calculated. Factor analysis was conducted based on the set of observable indices to identify unobservable combined factors affecting the correlation of these two species. Cluster analysis was employed to categorize the best genotypes based on the correlation between wasp and nematode populations. The genotypes Nok-Ghermezi, Haj Mohammad Ali, and Shah Anjiri Dane Sefid exhibited the lowest correlation rank between the wasp population and S. caprifici which indicates the least effect on the pollination efficiency of these three genotypes. The level of infestation index expected relative infestation, average population density, relative density, Okiai degree of overlap, and the Jaccard index of wasps and nematodes were 27, 50.17, 248.50, 18.17, 0.74, and 0.26, respectively. In any Fig genotype, where the overlap between the two species is higher, pollination efficiency decreases because the nematode uses the wasp as a phoretic and somewhat acts as a parasite on the pollinating wasp. Caprifig genotypes with a high number of B. psenes wasps and without or with a low population of S. caprifici can serve as a useful index for identifying fig genotypes with high potential for caprification. These genotypes could be considered in fig production or future breeding programs.

کلیدواژه‌ها [English]

  • Phoresy
  • Carrier
  • Population Changes
  • Fig Pollinator Wasp
  • Caprifig Nematode

Extended Abstract

Introduction

Populations of the caprifig syconium nematode (Schistonchus caprifici) invade the flowers of fig trees. Fig wasp Blastophaga psenes (L.) also plays a major role in the caprification of edible figs. Most fig trees (Ficus spp.) rely on an obligate mutualistic relationship with fig wasps (Hymenoptera: Agaonidae) for pollination and fruit production. The necessity of pollination varies according to the fig type. There are four fig types: caprifig, Smyrna, San Pedro, and Common fig. Smyrna-type figs develop only when fertile seeds are present. San Pedro-type first-crop figs develop without flower pollination, but the second-crop, which develops in the leaf axils, requires pollination. Common figs do not require pollination for either crop, and the seeds in the mature fruit are usually hollow. Various Blastophaga species of pollinator wasps play a crucial role in fig pollination. In addition to fig wasp pollinators, other organisms inhabit the fig’s inflorescences including several species of nematodes, such as caprifig syconium nematode (S. caprifici). In certain caprifig-growing areas of Fars province, some caprifig trees have encountered damage caused by S. caprifici which invades the flowers of fig trees, reducing the food quality and pollination efficiency. Considering the significant role of fig wasps in fig pollination and the damaging effects of fig nematodes on fig flowers, this study aimed to evaluate the population fluctuations of nematodes across different genotypes of caprifigs; in addition to investigate the mutual effects of fig wasp and caprifig syconium nematode populations in 43 different caprifig genotypes in Fars province.

 

Materials and Methods

In this study, the population of S. caprifici nematode and B. psenes wasp in various caprifig genotypes in Fars province (Iran) were examined. A total of 175 profichi caprifig syconium samples (categorized as early, mid-early, and late-early fruits) from 43 caprifig genotypes across the counties of Estahban, Ij, Khafr, Sarvestan, Kavar, and Shiraz in Fars province were collected during the spring of 2022 to 2023. First, the surface of the syconia was disinfected and the fruits were then cut into pieces with a scalpel. Extraction, identification, and population density determination were done according to the routine procedure in nematology laboratories. The nematode species was identified through morphometric and morphological characteristics. The number of fig wasps in each syconium of the caprifig genotypes was also counted under a stereo microscope. Relation indices between pollinator wasp and caprifig syconium nematode populations were analyzed. Factor analysis was performed based on the set of observable indices to identify unobservable combined factors affecting the correlation between these two species. Cluster analysis was used to categorize the best genotypes based on the correlation between the pollinating of wasps and nematodes.

 

Results and Discussion

 The species of all extracted nematodes was identified as S. caprifici. Data analysis showed that among the 43 caprifig genotypes, the Nok-Ghermezi, Haj Mohammad Ali, and Shah Anjiri Dane Sefid caprifig genotypes had the lowest correlation rank between the wasp population and the nematode population. Consequently, the relationship between nematodes and pollinating wasps had the least impact on pollination efficiency in these three genotypes. The level of infestation index, expected relative infestation, average population density, relative density, Okiai degree of overlap, and the Jaccard index of wasps and nematodes were calculated as 27, 50.17, 248.50, 18.17, 0.74, and 0.26, respectively. In any Fig genotype, where the overlap between the two species was higher, pollination efficiency decreases because the nematode uses the wasp as a phoretic and somewhat acts as a parasite on the pollinating wasp. Based on the results, it is likely that the relationship between the S. caprifici and the fig pollinator (B. psenes) in Fars province is a phoretic type, though this phoretic relationship imposes some cost on the wasp, affecting its lifespan.

 

Conclusion

The caprifig genotypes with a high number of B. psenes wasps and without or with a low population of S. caprifici could serve as a useful index for identifying fig genotypes with a high potential for caprification. These genotypes could be considered in fig production or breeding programs. Selecting and cultivating these genotypes in Fars province where the interaction of fig wasp and caprifig syconium nematode causes fig fruit fall, could improve pollination efficiency.

Anand, R. L. (2002). Schistonchus osmani n. sp. ex Ficus racemosa. Uttar Pradesh Journal of Zoology 22: 281-283.
Anonymus. (2022). Food and Agriculture Organization of the United Nations. FAOSTAT: Crops and livestock products. Retrieved from http://www.fao.org/faostat/en/#data/QCL.
Arzani, K., Kashefi, B. & Nejatian, M. A. (2006). Seasonal changes in fruit growth and development of some Asian pear (Pyrus serotina Rehd.) genotypes under Tehran environmental conditions. In XXVII International Horticultural Congress-IHC2006: International Symposium on Asian Plants with Unique Horticultural 769 (pp. 231-236). DOI:      10.17660/ActaHortic.2008.769.32
Baldock, K. C., Goddard, M. A., Hicks, D. M., Kunin, W. E., Mitschunas, N., Osgathorpe, L. M., Potts, S. G., Robertson, K. M., Scott, A. V., Stone, G. N. & Vaughan, I. P. (2015). Where is the UK's pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proceedings of the Royal Society B: Biological Sciences, 282(1803), p.20142849. DOI: 10.1098/rspb.2014.2849
Bartholomaeus, F., Davies, K. A., Ye, W. & Giblin-Davis, R. M. (2012). Schistonchus (Aphelenchoididae) from Ficus benjamina in Australia, with description of S. benjamina sp. n. Nematology14(8), 1005-1013. DOI:10.1163/156854112x639892
Cáceres, M. D., & Legendre, P. (2009). Associations between species and groups of sites: indices and statistical inference. Ecology, 90(12), 3566-3574. DOI: 10.1890/08-1823.1
Cobb, N. A. (1927). Note on a new nema, Aphelenchus retusus, with a proposed division of Aphelenchus into three subgenera (Notes in Helminthological Society of Washington, Oct. 16, 1926). Journal of Parasitology 14: 57-58.
Condit, I.J. (1932). The structure and development of flowers in Ficus carica L. Hilgardia, 6:443–481.
Condit, I.J. (1947). The fig. Chronica Botanica Co. Walthm, Mass USA, 240 pp.
Davies, K. A., Bartholomaeus, F., Kanzaki, N. & Giblin-Davis, R. M. (2013). Schistonchus molochi sp. n. and S. athertonensis sp. n. (Nematoda: Aphelenchoididae) from Ficus watkinsiana (Moraceae) in Australia. Nematology15(4), 389-400.
Davies, K. A., Ye, W., Kanzaki, N., Bartholomaeus, F., Zeng, Y. & Giblin-Davis, R. M. (2015). A review of the taxonomy, phylogeny, distribution and co-evolution of Schistonchus Cobb, 1927 with proposal of Ficophagus n. gen. and Martininema n. gen. (Nematoda: Aphelenchoididae). Nematology17(7), 761-829.
Davis, P. M. (2020). Statistics for describing populations. In Handbook of sampling methods for arthropods in agriculture (pp. 33-54). CRC Press. DOI: 10.1201/9781003067900
DeCrappeo, N. & Giblin-Davis, R. M. (2001). Schistonchus aureus n. sp. and S. laevigatus n. sp.(Aphelenchoididae): associates of native Floridian Ficus spp. and their Pegoscapus pollinators (Agaonidae). Journal of Nematology33(2-3),.91. PMID: 19266003
Dunn, D. W., Yu, D. W., Ridley, J. & Cook, J. M. (2008). Longevity, early emergence and body size in a pollinating fig wasp – implications for stability in a fig-pollinator mutualism. Journal of Animal Ecology 77, 927–935.
Ferguson, L., Micaildest, T.J. & Shorey. H.H. (1990). The California Fig Industry. Horticultural Review,
12:409-490.
Flaishman, M. A., Rodov, V., & Stover, E. (2008). The fig: botany, horticulture, and breeding. Horticultural Review, 34, 113–196.
Frades, I. & Matthiesen, R. (2010). Overview on techniques in cluster analysis. Bioinformatics Methods in Clinical Research, 81-107. DOI: 10.1007/978-1-60327-194-3_5
Frenzel, M. & Brandl, R. (2001). Hosts as habitats: faunal similarity of phytophagous insects between host plants. Ecological Entomology, 26(6), 594-601. DOI: 10.1046/j.1365-2311.2001.00355.x
Giblin-Davis R. M., Center, B.J., Nadel, H., Frank, J. H. & Ramirez, W.B. (1995). Nematodes associated with fig wasps, Pegoscapus spp. (Agaonidae), and syconia of native Floridian figs (Ficus spp.). Journal of Nematology 27: 1-14.
Grewal, P. S., Ehlers R. U. & Shapiro-Ilan, D. (2006). Nematodes as biocontrol agents. CAB publishing, CAB International, Oxon. 505pp.
Hamzehzarghani, H., Kushalappa, A. C., Dion, Y., Rioux, S., Comeau, A., Yaylayan, V., Marshall, W. D. & Mather, D. E. (2005). Metabolic profiling and factor analysis to discriminate quantitative resistance in wheat cultivars against fusarium head blight. Physiological and Molecular Plant Pathology, 66(4), 119-133. DOI: 10.1016/j.pmpp.2005.05.005
Khairi, A. & Goldansaz, H. (1998). Report of fig parasite nematode and wasp in Karaj. Iranian Thirteenth Plant Protection Congress (Vol. 2). Tehran, Karaj. (p.258).
Karimipour Fard, H. & Zare, H. (2020). First molecular characterization of an Iranian population of Schistonchus caprifici (Gasparrini, 1864) Cobb, 1927. (Rhabditida; Aphelenchoidea). Journal of Nematology 52: 1-3.
Khodaparast, R. & Monfared, A. (2010). Study of caprification of Blastophaga psenes and report of Philotrypesis caricae wasp in fig fruits in Estahban region. The seventh research seminar of honeybee. Tehran, Iran. p106.
Kolaei, M., Abdollahi, M. & Monfared, A. (2016). Description and population change of Schistonchus caprifici, the nematode associated with the pollinator fig wasp, Blastophaga psenes. Estahban, Iran. Zeitschrift für Entomologie37, 469-480. DOI: ENT_0037_0469-0480
Krishnan, A., Muralidharan, S., Sharma, L. & Borges, R.M. (2010). A hitchhiker’s guide to a crowded syconium: how do fig nematodes find the right ride? Functional Ecology24(4), 741-749. DOI: 10.1111/j.1365-2435.2010.01696.x
Kumari, R.V. & Reddy, Y. N. (1984). Studies on the association of a new nematode species Schistonchus hispida sp. n. (Aphelenchoidea, NICKLE 1971) and wasp. Proceedings of the Indian academy of parasitology 5: 21-25.
Martin, G. C., Owen, A. M. & Way, J. I. (1973). Nematodes, figs and wasps. Journal of Nematology. 5: 77–78.
Martin, G., Fontaine, C., Accatino, F. & Porcher, E. (2019). New indices for rapid assessment of pollination services based on crop yield data: France as a case study. Ecological Indicators, 101, pp.355-363. DOI: 10.1016/j.ecolind.2019.01.022
Pakniyat, M. & Taghizadeh, (2000) M. Distribution of Schistonchus caprifici (Nemata: Aphelenchoididae) in Caprifigs   (Ficus carica sylvestris) of Fars province. The 14th Iranian Plant Protection Congress.September 2000 , Karaj- Iran. (In Persian).
Poinar Jr, G.O. and Herre, E.A. (1991). Speciation and adaptive radiation in the fig wasp nematode Parasitodiplogaster (Diplogasteridae: Rhabditida) in Panama. Revue de Nématologie14(3), 361-374.
Ramirez, W., 1974. Coevolution of Ficus and Agaonidae. Annals of the Missouri Botanical Garden, 770-780. DOI: 10.2307/2395028
Reddy Y .N. & Rao, P. N. (1986). Schistonchus racemosa n sp. a nematode parasite of wasp (Ceratosolen sp.) associated with the fig, Ficus racemosa L. Indian Journal of Nematology 16: 135-137.
Rinker, D. L. & Bloom, J. R. (1982). Phoresy between a mushroom-infesting fly and two free-living nematodes associated with mushroom culture. Journal of nematology14(4), 599. PMCID: PMC2618213
Seinhorst, J. W. (1966). Killing nematodes for taxonomic study with hot fa 4: 1. Nematologica12(1), 178-178a. DOI: 10.1163/187529266X00239
Shi, R. R., Miao, B. G., Segar, S. T., Zeng, Y., Wang, B. and Peng, Y. Q., 2019. Are nematodes costly to fig tree–fig wasp mutualists? Entomologia Experimentalis et Applicata167(12), 1000-1011. DOI: 10.1111/eea.12860
Stover, E., Aradhya, M., Ferguson, L., & Crisosto, C. H. (2007). The fig: overview of an ancient fruit. HortScience42(5), 1083-1087.
Sun, F., Henry, N. & Yu, Q. (2017). First report of the fig cyst nematode, Heterodera fici Kirjanova, on fig tree, Ficus carica, in Ontario, Canada. Journal of Nematology49, 131-132. DOI: 10.5555/20173292004
Susoy, V., Herrmann, M., Kanzaki, N., Kruger, M., Nguyen, C. N., Rödelsperger, C., Röseler, W., Weiler, C., Giblin-Davis, R. M., Ragsdale, E. J. & Sommer, R. J. (2016). Large-scale diversification without genetic isolation in nematode symbionts of figs. Science Advances2(1), p.e1501031. DOI: 10.1126/sciadv.1501031
Van Goor, J., Piatscheck, F., Houston, D. D. & Nason, J. D. (2018). Figs, pollinators, and parasites: a longitudinal study of the effects of nematode infection on fig wasp fitness. Acta Oecologica90, 140-150. DOI: 10.1016/j.actao.2018.03.007
Vovlas, N., Inserra, R. N. & Greco, N., 1992. Schistonchus caprifici parasitizing caprifig (Ficus carica sylvestris) florets and the relationship with its fig wasp (Blastophaga psenes) vector. Nematologica, 38, 215-226.
Vovlas, N. & Larizza, A. (1996). Relationship of Schistonchus caprifici with fig inflorescences, the fig pollinator Blastophaga psenes and its cleptoparasite Philotrypesis caricae. Fundamental and Applied Nematology 19: 443-448.
Vovlas, N., Troccoli, A., Van Nort, S. & Van Den Berg, E. (1998). Schistonchus africanus n. sp. (Aphelenchida: Aphelenchoididae) associated with Ficus thonningii (Moracea) and its pollinator wasp Elisabethiella stuckenberg (Chalcidoidea: Agaonidae). Journal of Nematology 30: 404-410.
Weiblen, G. D. (2002). How to be a fig wasp. Annual Review of Entomology, 47, 299–330.
White, P. S., Morran, L., & de Roode, J. (2017). Phoresy. Current Biology27(12), 578-580.
Woodruff, G. C. & Phillips, P. C. (2018a). Field studies reveal a close relative of Caenorhabditis elegans thrives in the fresh figs of Ficus septica and disperses on its Ceratosolen pollinating wasps. BMC ecology, 18, 1-16. DOI: 10.1186/s12898-018-0182-z
Woodruff, G. C. & Phillips, P. C., (2018b). Two levels of host-specificity in a fig-associated Caenorhabditis. BioRxiv, p.261958. DOI: 10.1101/261958
Zare, H. & Jafari, M. 2018. Morphological characteristics of some Iranian fig cultivars. Marje Elm Publications. Iran: Shiraz. 112 p. (In Persian).
Zare, H., Darvishzadeh, H. & Rastegari, N. (2018). Effect of cold storage on Blastophaga psenes (Hymenoptera: Agaonidae) wasp inside different caprifig cultivars syconium. Plant Protection Journal, 9(1), 17-33. (In Persian).
Zare, H., Jafari, M. & Sharifzadeh, H. 2010. Immature fig fruit abscission. Horticultural Sciences Institute Publications. Iran: Tehran. 26p. (In Persian).
Zeng, Y., Ye, W., Giblin-Davis, R., Li, C., Zhang, S. & Du, Z. (2011). Description of Schistonchus microcarpus n. sp. (Nematoda: Aphelenchoididae), an associate of Ficus microcarpa in China. Nematology13(2), 221-233. DOI: 10.11646/zootaxa.3700.4.4