c3518cb17d976b8

پراکنش فضایی و نمونه‌برداری دنباله‌ای با دقت ثابت در دو گونه کفشدوزک شکارگر Hippodamia variegata و Coccinella septempunctata در مزرعه یونجه شهرستان بروجرد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز.ایران

2 گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز . ایران

3 بخش تحقیقات گیاه‌پزشکی، موسسه تحقیقات گیاهپزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

کفشدوزک‌های Hippodamia variegata Goeze  و Coccinella septempunctata (L) به­عنوان شکارگرهای فعال و چندخوار مزارع یونجه، از گونه‌های مختلف شته‌ و لارو سرخرطومی‌ها تغذیه می‌کنند. به منظور بررسی پراکنش فضایی جمعیت و طراحی یک برنامه نمونه‌برداری دنباله‌ای با دقت ثابت برای این شکارگرها، طی فصول‌ زراعی 1400 و 1401، در یک مزرعه یونجه واقع در شهرستان بروجرد با استفاده از تور حشره‌گیری به­صورت هفتگی نمونه‌برداری انجام گرفت. جهت تعیین نوع الگوی پراکنش دو گونه فوق از شاخص‌های تیلور و آیوائو استفاده گردید. تعداد نمونه لازم و معادلات خطوط تصمیم‌گیری برای برآورد میانگین جمعیت با استفاده از مدل گرین محاسبه شد. شاخص  در هر دو مدل، به شکل معنی‌داری از عدد یک بزرگ‌تر بود که نشان‌دهنده تجمعی بودن پراکنش این گونه‌ها است.  براساس مقادیر ضرایب تبیین و F، مدل رگرسیونی تیلور برای برآورد پراکنش فضایی کفشدوزک‌ها مناسب‌تر از مدل آیوائو بود. به کمک مدل گرین با سه سطح دقت 1/0، 15/0 و 25/0، تعداد نمونه لازم و معادلات خطوط تصمیم‌گیری جهت برآورد میانگین جمعیت کفشدوزک‌های فوق محاسبه گردید. در سطح دقت 25/0 تعداد نمونه لازم برای قطع خطوط تصمیم‌گیری جمعیت کفشدوزک C. septempunctata از 147 عدد در تراکم 03/0 به 46 عدد در تراکم 5/0 و تعداد نمونه مورد نیاز برای تخمین جمعیت H. variegata از 303 عدد در تراکم 03/0 به 61 عدد در تراکم 5/0 کاهش یافت. برنامه نمونه‌برداری دنباله‌ای با دقت ثابت نسبت به روش‌های مرسوم تخمین اقتصادی‌تر بوده و با دقت و سرعت بیشتری انجام می شود.

کلیدواژه‌ها


عنوان مقاله [English]

Spatial distribution and Fixed Precision Sequential Sampling Plan of Hippodamia variegata and Coccinella septempunctata population in alfalfa field of Borujerd County

نویسندگان [English]

  • Iman Sabouri 1
  • Arash Rasekh 2
  • Amir Mohseni Amin 3
1 Department of Plant Protection, College of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Department of Plant Protection, College of Agriculture, Shahid Chamran University of Ahvaz,, Ahvaz,, Iran
3 Plant Protection Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]

As polyphagous biocontrol agents, Hippodamia variegata (Goeze) and Coccinella septempunctata L. ladybirds consume many aphid species as well as weevil larvae, in alfalfa fields. The intended predator population was sampled on a weekly sampling program during two cropping seasons of 2021 and 2022 in an alfalfa field in Borujerd County, using an insect net. Taylor's power law and Iwao's patchiness regression approach were used to establish the geographical distribution of the predators. Using Green's fixed-precision sequential sampling plan, the number of necessary samples, and the equations of decision lines were calculated. The coefficient of Taylor's power law and Iwao's showed a significant difference with the number one. Both methods indicated aggregated spatial distribution. Based on R2 and F values, the spatial distribution data of both species was a better fit with the Taylor's Power Law model. Green's fixed-precision sequential sampling plan was employed to determine the number of necessary samples and the equations of decision lines. At the precision level of 0.25, the number of samples needed for cutting the decision lines of the population of C. septempunctata was from 147 at a density of 0.03 to 46 at a density of 0.5. The number of samples needed to estimate the population of H. variegata was from 303 at a density of 0.03 to 61 numbers at a density of 0.5. Fixed Precision Sequential Sampling Plan is more economical than conventional estimating methods, and it provides a faster and more accurate estimate of the insect population.

کلیدواژه‌ها [English]

  • Green’s fixed precision sequential sampling
  • predator's ladybug
  • sweep net
  • Taylor's power law
  • Iwaoís patchiness regression method

Extended Abstract

Introduction

    Alfalfa Medicago sativa L (Fabaceae) is one of the most important fodder plants with a high-quality widely grown throughout the world. The ecosystem of this perennial flowering plant includes a wide range of arthropod species. Among the natural enemies of aphids, as the most common pest of alfalfa, various species of ladybirds play an important role in establishing balance and natural regulation of the pests. As polyphagous biological control agents, Hippodamia variegata (Goeze) and Coccinella septempunctata L. (Col.: Coccinellidae) ladybirds consume many aphid species as well as weevil larvae, in alfalfa fields. Particularly in the case of sequential sampling, knowing the kind of spatial distribution of an arthropod population facilitates the precise, dependable, and cost-effective sampling of that population. Sequential sampling is a method that expresses the appropriate location of populations based on the average population density. Sequential sampling provides a quick and reliable estimate of populations by reducing the number of samples, and the time required for sampling and increasing the accuracy, relative to conventional methods of estimating.

 

Materials and Methods

Sampling of the intended predator population was performed on a weekly sampling program during two cropping seasons of 2021 and 2022 in a seven-hectare alfalfa field, Hamdani cultivar located in Borujerd County (Lorestan Province), using an insect net (opening diameter 30 cm, handle length 110 cm and net length 45 cm). The samplings were conducted from the middle of March to the end of September for both cropping seasons. Using the collected data, the mean and variance of the whole insect population were determined. Taylor's power law (TPL) and Iwao's patchiness regression approach were used to establish the geographical distribution of the predators' whole insect populations. Using Green's fixed-precision sequential sampling plan, the number of necessary samples, and the equations of decision lines were calculated to estimate their population average.

 

Results and discussion

In this research, to determine the type of distribution pattern of two species of predatory ladybirds, H. variegata and C. septempunctata, Taylor's power law, and Iwao's patchiness regression methods were used. The coefficient of Taylor's power law (b H.variegata  = 1.399,  b C.septempunctata = 1.563) and Iwao's (β H. variegata= 1.293, β C.septempunctata = 1.327) showed a significant difference with the number one. Both methods indicated aggregated spatial distribution of both species. Based on R2 and F values ​​obtained from the regression calculations, the spatial distribution data of both species was a better fit with the Taylor's Power Law model (R2 H. variegata = 0.94, R2 C. septempunctata = 0.88) provided that the Iwao's model (R2 H. variegata = 0.86, R2 C. septempunctata = 0.74). Due to the significance of the distribution coefficients of the data of two years, the data of the second year were used to design the sequential sampling model. To estimate the average population of the aforementioned ladybirds, Green's fixed-precision sequential sampling plan (at three fixed precision levels, including 0.1, 0.15, and 0.25), was employed to determine the number of necessary samples and the equations of decision lines. To achieve a precision of 0.25, which is acceptable for IPM programs, the average number of samples required for C. septempunctata and H. variegata species were 7 and 8 sample units, respectively. At the precision level of 0.25, the number of samples needed for cutting the decision lines of the population of ladybird C. septempunctata was from 147 at a density of 0.03 to 46 at a density of 0.5. The number of samples needed to estimate the population of H. variegata was from 303 at a density of 0.03 to 61 numbers at a density of 0.5. Fixed Precision Sequential Sampling Plan is more economical due to cost (reduction of the number of samples) compared to conventional methods of estimating, and it provides a faster and more accurate estimate of the insect population.

 

Conclusion

In this research, the type of distribution pattern of two species of predatory ladybirds, H. variegata and C. septempunctata was determined for the first time at alfalfa fields in the Borujerd region of Lorestan Province. Given that one of the fundamental and advised IMP program principles is reducing management costs, the Fixed Precision Sequential Sampling Plan can be very helpful in population forecasting because it significantly reduces the number of samples and also determines the accuracy level.

REFERENCES
Afshari, A., Soleymannejadian, E., & Shishehbor, P. (2007). Spatial distribution of the natural enemies of the cotton aphid, and the comparison of its estimating procedures in cotton fields of Gorgan, Iran. Journal of Entomological Society of Iran, 27(2), 61-78. (In Persian)
Afshari, A., & Dastranj, M. (2010). Density, spatial distribution and sequential sampling
plans for cereal aphids infesting wheat spike in Gorgan, northern Iran. Plant
Protection (Scientific Journal of Agriculture)
, 32(2), 89-102. (In Persian)
Afshari, A. (2011). Density dynamics, spatial distribution and sequential sampling of important aphidophagous predators in wheat fields of Gorgan. Journal of Plant Protection, 25(3), 276-285. (In Persian)
Bakhshizadeh, N., Mohiseni, A., & Fathi, A. (2010). Dispersion pattern and sequential sampling model with fixed- precision for estimating population of Eurygaster integriceps Put. (Het.: Scutelleridae) in rainfed wheat fields of Ardabil. Scientific Journal of Agriculture, 33(2), 63-75. (In Persian)
Binns, M. R. (1994). Sequential sampling for classifying pest status. Pp. 137-174. In: L. P. Pedigo and G. D. Buntin (eds.)., Handbook of sampling methods for Arthropods in agriculture. CRC Boca Raton., FL.
Burkness, E.C., & Hutchison, W.D. (1998). Development and validation of a fixed-precision sampling plan for estimating striped cucumber beetle (Coleoptera: Chrysomelidae) density in cucurbits. Environmental Entomology, 27, 178-183.
Brewer, M.J., & Elliot, N.C.(2004). Biological control of cereal aphids in North America and mediating effect of host plant and habitat manipulatios. Annual Review of Entomology, 42, 219-242.
Chambers, R.J., Sunderland, K.D., Stacey, D.L., & Wyatt, I.J. (1986). Control of cereal aphids in winter wheat by natural enemies: aphid-specific predators, parasitoids and pathogenic fungi. Annals of Applied Biology, 108,219-23.
Clement, S.L., Elberson, L.R., Youssef, N., Young F.L., & Evans M.A. (2004). Cereal aphid and natural enemy populations in cereal production systems in eastern Washington, Journal of the Kansas Entomological Society, 77, 165-173.
Collins, K.L., Boatman, N.D., Wilcox, A., Holland, J.M., & Chaney K. (2002). Influence of beetle banks on cereal aphid predation in winter wheat. Agriculture, Ecosystems and Environment, 93, 337-350.
Croft, B.A., Welch, S.M., & Dover, M.J. (1976). Dispersion statistics and sample size estimates for populations of the mite's species Panonychus ulmi and Amblyseius fallacis on apple. Environmental Entomology, 5(2), 227-233.
Elliott, N. C. & Kieckhefer, R. W. (1986). Cereal aphid populations in winter wheat: spatial
distributions and sampling with fixed levels of precision. Environmental Entomology
15, 945-958.
Elliott, N.C., & Kieckhefer, R.W. (1990). Dynamics of aphidophagous coccinellid assemblages in small grain fields in eastern South Dakota. Environmental Entomology, 19, 1320-1329.
Elliott, N.C., Michels, Jr G.J., Kieckhefer, R.W. & French B.W. (1997). Sequential sampling for adult coccinellids in wheat. Entomologia Experimentalis et Applicata, 84, 267-273.
Elliott, N. C., Gilles, K. L., Royer, T. A., Kindler, S. D., Tao, F. L., Jones, D. B., & Cuperus, G. W. (2003). Fixed precision sequential sampling plans for Greenbug and bird cherry-oat aphid (Homoptera: Aphididae) in winter wheat. Journal of Economic Entomology, 96(5), 1585-1593.
Farahi, S., & Sadaghi H. (2008). Species diversity of aphids and ladybugs in wheat fields, Mashhad city, Khorasan province. Journal of plant protection, 23(2), 89-95, (in Persian).
Feng, M. G., & Nowierski, R. M. (1992). Spatial distribution and sampling plans for four
species of cereal aphids (Homoptera: Aphididae) infesting spring wheat in
southwestern Idaho. Journal of Economic Entomology, 85(3), 830-837.
Feng, M.G., Nowierski, R.M., Z eng, Z., & Scharen, A.L.(1993). Estimation of population density of the Russian wheat aphid (Homoptera: Aphididae) from the proportion of grain tillers with different tally threshold of aphids. Journal of Economic Entomology, 86, 427-435.
Franzmann, B. A. (2002). Hippodamia varigata; a predacious ladybird new in Australia.Australian Journal of Entomology, 41, 375-377. DOI: http://doi.org/10.1046/j.1440-6055.2002.00318.x
Galvan, T.L., Burkness, E.C., & Hutchison W.D. (2007). Enumerative and binomial sequential sampling plans for the multicolored Asian lady beetle (Coleoptera: Coccinellidae) in wine grapes. Journal of Economic Entomology, 100, 1000-1010.
Ghahremani, M., Karimzadeh, R., Iranipour ,S. (2023). Using statistical methods to determine spatio-temporal distribution of aphids and aphidophagous ladybirds in alfalfa fields. Journal of Entomological Society of Iran, 43(4), 393-404.
Green, R. H. (1970). On fixed level precision sequential sampling. Research in Population
Ecology,
12, 249-251.
Hollingsworth, C. S., & Gatsonis, C. A. (1990). Sequential sampling plans for green peach aphid (Homoptera: Aphididae) on potato. Journal of Economic Entomology, 83(4), 1365-1369.
Hutchison, W. D., Hogg, D. B., Poswal, M. A., Berberet, R. C., & Cuperus, G. W. (1988).
Implications of the stochastic nature of Kuno's and Green's fixed-precision stop lines:
sampling plans for the pea aphid (Homoptera: Aphididae) in alfalfa as an example.
Journal of Economic Entomology, 81(3), 749-758.
Hsu, J. C., Horng, S. B., & Wu, W. J. (2001). Spatial Distribution and Sampling of Aulacaspis
yabunikkei
(Homoptera: Diaspididae) in camphor trees. Plant Protection Bulletin, 43, 69-81. From: https://scholars.lib.ntu.edu.tw/handle/123456789/95416
Iperti, G., Lapchin, L., Ferran, A., Rabasse, J.M., & Lyon, J.P. (1988). Sequential sampling of adult Coccinella septempunctata L. in wheat fields. Canadian Entomologist, 120, 773-778.
Iwao, S. (1968). A New regression method for analyzing the aggregation pattern of animal populations. Researches on Population Ecology, 10, 1-20.
Johki, Y., Obata, S., Matsui, M. (1988). Distribution and behavior of five species of aphidophagous ladybirds (Coleoptera) around aphid colonies, In: Niemczyk E, Dixon AFG, (eds.), Ecology and Effectiveness of Aphidophaga, 1 st ed. SPB Academic Publishing, The Netherlands. pp. 35-38.
Karimi, H. (1990). Alfalfa. 371 pp. Iran University Press. Tehran, Iran. (In Persian).
Koch, R.L., Burkness, E.C., & Hatchison, W.D. (2006). Spatial distribution and fixed- precision sampling plans for the ladybird Harmonia axyridis in sweet corn. Biocontrol, 51, 741-751.
Kavallieratos, N. G., Athanassiou, C. G., Tomanovic, Z., Sciaretta, A., Trematerra, P., & Zink, V.(2005). Seasonal occurrence, spatio-temporal distribution and sampling indices for Myzus persicea (Sulzer) (Hemiptera: Aphidoidea) and its parasitoids (Hymenoptera: Braconidae: Aphidiinae) on tobacco. European Journal of Entomology, 102, 459-468.
Kontodimas, D. C., & Stathas, G. J. (2005). Phenology, fecundity and life table parameters of
the predator Hippodamia variegate reared on Dyaphis crataegi. Biocontrol, 50(2),
223-233. DOI: http://doi.org/10.1007/s10526-004-0455-7
Kuhn, J., Ellis, T., & Fitzhugh, L. (1996). Alfalfa helps wildlife on your farm. In Proceedings, 27 National Alfalfa Symposium and 26 California Alfalfa Symposium, 9-10 December, 1996, San Diego, CA. Certified Alfalfa Seed Council, Davis, CA and Univ. of California, Davis.
Kuno, E. (1969). A new method of sequential sampling to obtain the population estimates
with a fixed level of precision. Research in Population Ecology, 11, 127-136.
Michels, G.J., Elliott, N.C., Romero, R.L., & French, W.B. (1997). Estimating populations of
aphidophagous coccinellidae (Coleoptera) in winter wheat. Environmental Entomology, 26, 4-11.
Mohiseni, A. A., Soleyman-nejadian, A.,  Mossadegh, M.S., Radjabi, GH.R., & Pirhadi, A. (2007). Sequential sampling plan of Eurygaster integriceps (Het.: Scutelleridae) in wheat fields of Borujerd region. Journal of Entomological Society of Iran, 27, 43-59 (In Persian)
Mohiseni, A. A., Soleimannejadian, M. S., & Rajabi, G. (2009). Fixed precision sequential
sampling plans to estimate overwintered Sunn pest (Eurygaster integriceps Put.)
population in rainfed wheat fields in Borujerd. Journal of Plant Protection, 32(1), 33-
47. (In Persian).
Moin-Namini, S. (2000). Biology and forecasting network pattern for monitoring Sunn pest,
Eurygaster integriceps Puton in Varamin region
, Iran. M. Sc. Thesis. Faculty of
Agriculture, University of Guilan. 68 pp. (In Persian).
Musser, F.R., Nyrop, J.P., & Shelton, A.M. (2004). Survey of predators and sampling method comparison in sweet corn. Journal of Economic Entomology, 97, 136-144.
Naranjo, S.E., Hatchison, W.D. (1997). Validation of arthropod sampling plans using a resampling approach: software and analysis. Am Entomology, 43(1), 48-57.
Nazari, M., Mozafarian, F., Maarosik, Y.(2001). Identification of the natural enemies of wheat aphids in Karaj region. 15th Iranian plant protection Congress. September 7-11, Razi University of Kermanshah. P. 21. (In Persian)
Nestel, D., Cohen, H., Saphir, N., Klein, M., & Mendel, Z. (1995). Spatial
distribution of scale insects: comparative study using Taylor’s power law.
Environmental Entomology, 24(3), 506-512.
Nyrop, J. P., & Wright, R. J. (1985). Use of double sample plans in insect sampling with reference to the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Environmental Entomology, 14, 644-49.
O’Rourke, P.K., & Hutchison, W.D. (2003). Sequential sampling plans for estimating European corn borer (Lepidoptera: Crambidae) and corn earworm (Lepidoptera: Noctuidae) larval density in sweet corn ears. Crop Protection, 22 , 903-909.
Pankanin-Franczyk, M., & Ceryngier, P. (1995). Cereal aphids, their parasitoids and coccinellids on oats in central Poland. Journal of Applied Entomology, 119, 107-111.
Pedigo, L. P., & Zeiss, M. R. (1996). Analyses in insect ecology and management. Iowa State
University Press/Ames.
Putnam, D.H., Russelle, M., Orloff, S., Kuhn, J., & Fitzhugh, L. (2001). Alfalfa, Wildlife and the Environment. The Importance and Benefits of Alfalfain the 21st century. A Friendly and Informative Guide to Alfalfa, the Queen of Forages. California Alfalfa and Forage Association Press. 24 pp.
Trumble, J.T., Brewer, M.J., Shelton, M.A., & Nyrop, J.P. (1989). Transportability
of fixed-precision level sampling plans. Researches on Population Ecology, 31,
325-342.
Radjabi, G. (2008). Insect Ecology, Applied and Considering, the Conditions of Iran. AgricultaralResearch, Education and Extention Organization. (In Persian).
Rajabi, G. (2009). Insect Ecology (according to Iran conditions). Ministry of Agriculture Press. (In Persian)
Rajabpour, A., Yarahmadi,F.(2013). Spatial dispersion and sequential sampling plan for black bean aphid, Aphis fabae Scopoli, on faba bean fields in Veis region, Ahvaz. Journal of Plant Protection, 36(3), 69-79.(In Persian).
Rakhshani, E., Ebadi, R., & Mohammadi, A.A. (2009). Population dynamics of alfalfa aphids and their natural enemies in Isfahan, Iran. Journal of Agricultural Science and Technology, 11, 505-520. (In Persian)
Ramezani, L., Rajabpur, A., Zandi, N., & Yar Ahmadi,F. (2015). Fixed Precision Sequential Sampling Plan of Aphids of Ahvaz wheat fields. Journal of Plant Protectio, 29(4), 582-588. https://civilica.com/doc/666396. (In Persian 
Ren, G.W., Shen, W,P., & Ma, J.G. (2000). The spatial distribution pattern and sampling method of the larvae of Leis axyridis in tobacco fields. Entomological Knowledge, 37, 164-165.
Sally, R., Singh, S. R., Walters, K. F. A., & Northing, P.h. (2004). Consumption rates and predatory activity of adult and fourth instar larvae of the seven spot ladybird, Coccinella septempunctata (L.), following contact with dimethoate residue and contaminated prey in laboratory arenas. Biological Control, 30, 127-133.DOI:http://doi.org/10.1016/j.biocontrol.2004.01.003
Shayestehmehr,H.(2014). Spatio - temporal distribution of Therioaphis maculata Buckten, Aphis craccivora Koch and coccinellid lady beetles in alfalfa fields of karkaj. M.Sc Thesis. University of Tabriz. (In Persian)
Shekarian, B., Rezvani, A. (2002). Cereal aphids, population percentage and their natural enemies in wheat fields of Lorestan province. 15th Iranian plant protection Congress. September 7-11, Razi University of Kermanshah. P. 23. (In Persian)
Soleimani, S., & Madadi, H. (2015). Seasonal dynamics of: the pea aphid, Acyrthosiphon pisum (Harris), its natural enemies the seven spotted lady beetle Coccinella septempunctata Linnaeus and variegated lady beetle Hippodamia variegata Goeze, and their parasitoid Dinocampus coccinellae (Schrank). Journal of Plant Protection Research, 55, 421-428. DOI: http://doi.org/10.1515/jppr-2015-0058(In Persian)
Southwood, T. R. E. (1978). Ecological methods, with particular reference to the study of insect populations. (2nded.) Chapman & Hall, London. 524 pp. DOI: http://doi.org/10.1007/978-94-009-1225-0
Southwood, T.R.E. (1995). Ecological methods with particular reference to the study of insect populations. Champan and Hall, London. UK.
Southwood, T.R.E., & Henderson, P.A. (2000). Ecological Methods, 3rded. Oxford: Blackwell Science.
Summers, C.G. (1976). Population fluctuations of selected arthropods in alfalfa;Influence of two harvest practices. Environmental Entomology, 5(1), 103-110.
Sule, H., Muhamad, R., Omar, D., Hee, A. K. W. & Zazali, C. (2012). Dispersion pattern and sampling of Diaphorina citri Kuwayama (Hemiptera: Psylidae) populations on Citrus suhuiensis Hort. Ex Tanaka in Padang Ipoh.
Taylor, L. R. (1961). Aggregation, variance and the mean. Nature, 189, 732-735.
Taylor, L.R. (1984). Assessing and interpreting the spatial distributions of insect populations. Annual Review of Entomology, 29, 321-357.
Tenhumberg, B., & Poehling, H.M. (1995). Syrphids as natural enemies of cereal aphids in Germany: aspects of their biology and efficacy in different years and regions. Agriculture, Ecosystems and Environment, 52, 39-43.
Tsai, J.H., Wang, J.J., & Liu, Y.H. (2000). Sampling of Diaphorina citri (Homoptera: Psyllidae) on orange jassamine in southern Florida. Florida Entomologist, 83(4), 446-459.
Wang, K., & Shipp, J.L. (2001). Sequential sampling plans for western flower thrips (Thysanoptera: Thripidae) on green house cucumbers. Journal of Economic Entomology, 94, 579-585.
Winder, L., Hirst, D.J., Carter, N., Wratten, S.D., & Sopp, P.I. (1994). Estimating predation of the grain aphid Sitobion avenae by polyphagous predators. Journal of Applied Ecology, 31, 1-12.
Wilson, L.T., Mount, C., Pickel,, R.C., & Zalom, F.G. (1983). Presence-Absence Sequential Sampling for Cabbage Aphid and Green Peach Aphid (Homoptera: Aphididae) on Brussels Sprouts. Journal of Economic Entomologiy, 76(3), 476-479.
Young, L.J., & Young, L.H. (1998). Statistical Ecology. Kluwer Academic Press, Boston, 565 p.