c3518cb17d976b8

محتوای فنل و فلاونوئید کل در برخی قارچهای درون‌رست گیاه گل محمدی در ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاهپزشکی، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج. ایران

2 پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهید بهشتی، تهران

چکیده

جهت شناسایی قارچ­های درون‌رست گیاه گل محمدی (Rosa damascena) در ایران، نمونه­برداری در طی سال­های 1396 و 1397 از شاخه­ها و برگ­ های سالم در استان­های آذربایجان شرقی، آذربایجان غربی، اصفهان، البرز، خراسان رضوی، زنجان، کرمان، کرمانشاه، مازندران و یزد انجام گرفت. در مجموع، 58 جدایه قارچی بر اساس ویژگی­های ریخت­شناختی و واکاوی مولکولی مبتنی بر نواحی ITS-rDNA و بخش از ژنtef1-α  مورد شناسایی قرار گرفتند. در این مطالعه گونه­های Fusarium globosum، Sarocladium kiliense، Colletotrichum karsti، Lophotrichus ampullus، Ascotricha chartarum، Hyphodontia setulosa و Kalmusia variispora شناسایی شدند. آرایه­‌های به دست آمده در این پژوهش برای نخستین بار به عنوان قارچ درون‌رست از گیاه گل محمدی در دنیا گزارش می­شوند. گونه
ampullus L. آرایه جدیدی برای فلور قارچی ایران است. آزمون بیماریزایی جدایه­های منتخب روی نهال­های حاصل از کشت بافت گل محمدی با ایجاد زخم روی شاخه انجام شد. ارزیابی نتایج پس از 25 روز نشان داد که جدایه­های استفاده شده روی این گیاه بیماری‌زا نمی­باشند. غربال جدایه­های قارچی درون‌رست بر اساس میزان تولید فنل و فلاونوئید کل در محیط کشت با استفاده از اسپکتروفتومتر انجام شد. نتایج نشان داد که دو جدایه Rd45 (L. ampullus) و Rd393 (K. variispora) به ترتیب دارای بیشترین و کمترین میزان فلاونوئید کل می­باشند. علاوه بر این، دو جدایه Rd36 (H. setulosa) و Rd45 نیز به ترتیب بیشترین و کمترین میزان فنل کل را تولید کردند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of total phenolic and flavonoid content in some endophytic fungi of Damask Rose (Rosa damascena Mill.) in Iran

نویسندگان [English]

  • Omid Atghia 1
  • Khalil-Berdi Fotouhifar 1
  • Mohsen Farzaneh 2
  • Mohammad Javan Nikkhah 1
1 Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2 Department of Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran
چکیده [English]

In order to identification of endophytic fungi of damask rose (Rosa damascena) in Iran, sampling was done during the years 2017 and 2018 from healthy branches and leaves in the provinces of East Azerbaijan, West Azerbaijan, Isfahan, Alborz, Khorasan Razavi, Zanjan, Kerman, Kermanshah, Mazandaran, and Yazd. A total of 58 fungal isolates were identified using the morphological characteristics and molecular analysis based on ITS-rDNA regions and part of the tef1-α gene. In this study, Fusarium globosum, Sarocladium kiliense, Colletotrichum karsti, Lophotrichus ampulus, Ascotricha chartarum, Hyphodontia setulosa, and Kalmusia variispora were identified. The taxa obtained in this research are reported for the first time in the world as endophytic fungi from the damask rose. Lophotrichus ampullus is a new taxon for the funga of Iran. The pathogenicity test of the selected isolates was performed on the seedlings obtained from tissue culture of the rose by creating wounds on the branch. Evaluation of the results after 25 days showed that the isolates used on this plant are not pathogenic. The screening of endophytic fungal isolates was done based on the amount of total phenolics and flavonoids production in the culture medium using a spectrophotometric method. The results showed that the two isolates, Rd45 (L. ampullus) and Rd393 (K. variispora), have the highest and lowest amount of total flavonoids, respectively. In addition, two isolates, Rd36 (H. setulosa) and Rd45, also produced the highest and lowest amount of total phenol, respectively. 

کلیدواژه‌ها [English]

  • secondary metabolite
  • taxon
  • morphology
  • spectrophotometry
  • molecular phylogeny

Extended Abstract

Introduction

      The genus Rosa belongs to the Rosaceae family, including over 200 species. Among them, Rosa damascena Mill. is a unique species used in health, pharmaceutical, and food industries. Endophytes are a wide range of plant pathogenic and saprophytic fungi that have a long latent period before the onset of external symptoms, which are necessary for the establishment of a symbiotic relationship. Many endophytes have the potential to synthesize various bioactive metabolites such as alkaloids, terpenoids, phenolics, quinines, flavonoids, and steroids. So far, no study has been conducted on the identification of endophytic fungi of the Damask rose plant, nor on the investigation of total phenolic and flavonoid content produced by its endophytic fungi in Iran. Therefore, the current research can provide new information in this field.

Materials and Methods

       To isolate and identification of endophytic fungi of Damask rose in Iran, during the autumn of 2016 and 2017, some specimens from healthy twigs and leaves of the bushes were collected from East Azerbaijan, West Azerbaijan, Isfahan, Alborz, Khorasan Razavi, Zanjan, Kerman, Kermanshah, Mazandaran, and Yazd Provinces. After washing with running tap water for 15 min and four and five times with sterile distilled water, plant materials surface sterilized with 70% ethanol for 1 min, 2% sodium hypochlorite solution for 1 min for leaves and 3 min for twigs, then rinsing with sterile distilled water for 1 min and 70% ethanol for 1 min, followed by final rinsing with sterile distilled water for 1 min. Plant materials were cut into small pieces after drying and were placed onto the 2% WA amended with chloramphenicol, gentamicin, and were kept at 25ºC in continuous dark conditions for 7-40 days. Fungal isolates were purified using the hyphal tip method. isolates were grouped according to the major morphological and cultural characteristics. The molecular analysis was performed based on nucleotide sequences of ITS-rDNA and tef1-α genomic regions. The pathogenicity test of the selected isolates was performed on the seedlings obtained from the tissue culture of the Damask rose by creating a wound on the branch (branch inoculation). PDA plugs from 14-day-old cultures were placed on the wounds and then were wrapped with parafilm to prevent desiccation. Fresh Agar plugs without fungal mycelium were used as control treatments. The selected endophytic fungi were grown on PDA culture medium, and after seven days, one to three mycelial plugs were transferred into the potato dextrose broth (PDB) culture medium. The inoculated culture media were kept at 25 ˚C to 27 ˚C for 14 days inside the shaker incubator at the speed of 120 rpm. Screening of fungal isolates was done based on the production of phenolic acids (total phenolics) and flavonoids in the culture medium using the spectrophotometry method. Statistical analysis was done using the SAS software version 9.4.

 

Results and Discussion

     A total of 58 fungal isolates were recovered from the Damask rose. Based on the morphological characteristics and molecular analysis of ITS-rDNA and tef1-α genomic sequences, Fusarium globosum, Sarocladium kiliense, Colletotrichum karsti, Lophotrichus ampullus, Ascotricha chartarum, Hyphodontia setulosa, and Kalmusia variispora were isolated and identified. The evaluation of the symptoms on the branches after 25 days from inoculation proved that the isolates are non-infectious on the Damask rose plants. The screening of endophytic fungal isolates was done based on the production of phenolic acids (total phenolics) and flavonoids in the culture medium using the spectrophotometry method. After analyzing the obtained results, it was found that the two isolates, Rd45 (L. ampullus) and Rd393 (K. variispora), have the highest and lowest amount of total flavonoids, respectively. In addition, two isolates, Rd36 (H. setulosa) and Rd45, also produced the highest and lowest amount of total phenolics, respectively.

 

Conclusion

     Since endophytic fungi are potential sources of various phenolic and flavonoid compounds, the present study aims to identify endophytic fungi of Damask rose plants. The findings of this investigation showed that all identified taxa are new endophytic fungi of the Damask rose in the world. This study is the first report of L. ampullus for fungi of Iran. In the present study, a large number of endophytic fungal isolates were recovered, which could produce phenolic and flavonoid compounds.

منابع

ارشاد، ج. (1401). قارچ­‌ها و شبه قارچ‌­های ایران. انتشارات موسسه تحقیقات گیاه پزشکی کشور. 712 صفحه.
ثابتی، ع. (1394). زراعت گل محمدی. انتشارات آموزش و ترویج کشاورزی، 119 صفحه.
 
RERERENCES
Abdollahi Aghdam, S., & Fotouhifar, K. (2017). Identification of some endophytic fungi of cherry trees (Prunus avium) in Iran. Iranian Journal of Plant Protection Science, 48, 43–57.
Abdinezhad, E., Alizadeh, A., & Shirzad, A. (2024). Colletotrichum karstii, causal agent of anthracnose on ornamental Ficus benjamina in Iran. Journal of Advances in Plant Protection, 1(1), 51-58.
Al-Rashdi, F.K.H., Al-Sadi, A.M., Al-Riyamy, B.Z., Maharachchikumbura, S.S., Al-Sabahi, J.N., & Velazhahan, R. (2022). Endophytic fungi from the medicinal plant Aloe dhufarensis Lavranos exhibit antagonistic potential against phytopathogenic fungi. South African Journal of Botany, 147, 1078-1085.
Altschul, S.F., Madden, T.L., Zhang, A.A.J., Zhang, Z., Miller, W., & Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389-3402.
Bashir, A., Manzoor, M.M., Ahmad, T., Farooq, S., Sultan, P., Gupta, A. P., & Riyaz-Ul-Hassan, S. (2023a). Endophytic fungal community of Rosa damascena Mill. as a promising source of indigenous biostimulants: Elucidating its spatial distribution, chemical diversity, and ecological functions. Microbiological Research, 276, 1-14.
Bashir, A., Ahmad, T., Farooq, S., Lone,W.I. , Manzoor, M.M., Nalli, Y., Sultan, P., Chaubey, A., Ali, A., & Riyaz-Ul-Hassan, S. (2023b). A secondary metabolite of Cercospora sp., associated with Rosa damascena Mill., inhibits proliferation, biofilm production, ergosterol synthesis and other virulence factors in Candida albicans. Microbial Ecology, 85(4), 1276-1287.
Beales, P.T., Cairns, W., Duncan, W., Grant, K., Grapes, P., Harkness, K., Mattock, J.H., & Ruston, D. (1998). Botanica’s roses. Randomhouse Australia Pty. Ltd., Sydney 4(5), 128-154.
Cheng, X., Li, W., & Cai, L. (2015). Molecular phylogeny of Ascotricha, including two new marine algae-associated species. Mycologia, 107(3), 490-504.
Dai, J., Krohn, K., Flörke, U., Draeger, S., Schulz, B., Kiss‐Szikszai, A., Antus, S., Kurtán, T., & Van Ree, T. (2006). Metabolites from the endophytic fungus Nodulisporium sp. from Juniperus cedre. European Journal of Organic Chemistry, 15, 3498-3506.
Damm, U., Cannon, P.F., Woudenberg, J.H.C, Johnston, P.R., Weir, B.S., & Tan, Y.P. (2012). The Colletotrichum boninense species complex. Studies in Mycology, 73, 1-36.
Doveri, F. (2014). Coprophilous pyrenomycetes s.l. from the Tuscan Archipelago and adjacent peninsular coast: description of five species new to Italy. Mycosphere, 5(1), 188–216.
Dwibedi, V., Rath, S.K., Joshi, M., Kaur, R., Kaur, G., Singh, D., & Kaur, S. (2022). Microbial endophytes: application towards sustainable agriculture and food security. Applied Microbiology and Biotechnology, 106(17), 5359–84.
Ebrahimi, L., & Fotouhifar, Kh. B. (2016). Identification of some fungi accompanying the scab symptoms in Iran. Mycologia Iranica, 3(1), 25–37.
Eghrari, A. O., Gibas, C., Watkins, T., Vahedi, S., Lee, R. Houle, E., Suarez, M. J., Eberhart, C., Sutton, D. A., Wiederhold, N. P., Sikder, S., & Zhang, S. X. (2015). First human case of fungal keratitis caused by a putatively novel species of Lophotrichus. Journal of Clinical Microbiology, 53(9), 3063–3067.
Elshafie, H.S., Camele, I., & Mohamed, A.A. (2023). A comprehensive review on the biological, agricultural and pharmaceutical properties of secondary metabolites based-plant origin. International Journal of Molecular Sciences, 24(4), 3266.
Ershad, D. (2009). Fungi of Iran. Iranian Research Institute of Plant Protection, Tehran, Iran. Pp. 531.
Etalo, D.W., Jeon, J.S., & Raaijmakers, J.M. (2018). Modulation of plant chemistry by beneficial root microbiota. Natural Product Reports, 35(5), 398–409.
Farooq, S., Nalli, Y., Ali, A., & Riyaz-Ul-Hassan, S. (2018). Chemical investigation of an endophyte isolated from Rosa damascene. Conference: IIIM Industry-Academia meet on opportunities and challenges in fermentation based industrial processes.
Gaitan, M.A.G., Wen, S., Fetcher, N., & Bayman, P. (2005). Effects of fungicides on endophytic fungi and photosynthesis in seedlings of a tropical tree, Guarea guidonia (Meliaceae). Acta Biológica Colombiana, 10(2), 41-47.
Gao, Y., Xu, Y., Dong, Z., Guo, Y., Luo, J., Wang, F., Yan, L., & Zou, X. (2025). Endophytic fungal diversity and its interaction mechanism with medicinal plants. Molecules, 30(5), p.1028.
Gault, S.M., & Synge, P.M. (1971). Dictionary of roses in color. First ed., Ebury Press, USA.
Gautam, V.S., Singh, A., Kumari, P., Nishad, J.H., Kumar, J., Yadav, M., Bharti, R., Prajapati, P., & Kharwar, R.N. (2022). Phenolic and flavonoid contents and antioxidant activity of an endophytic fungus Nigrospora sphaerica (EHL2), inhabiting the medicinal plant Euphorbia hirta (dudhi) L. Archives of Microbiology, 204(2), 140.
Ghasemi Esfahlan, S., Hemmati, R., Mohebbi, S., Batley, J., & Arzanlou, M. (2023). Identification of endophytic fungi of grapevine with emphasis on the causal agents of grapevine trunk disease in the vineyards of Zanjan province in Iran. Forest Pathology, 53(1), 12784.
Ghobad-Nejhad, M., Asgari, B., & Chaharmiri Dokhaharani, S. (2017). Notes on some endophytic fungi isolated from Quercus brantii in Dena, Kohgiluyeh and Boyer-Ahmad province. Mycologia Iranica, 4(1), 1-12.
Guarro, J., Gené, J., Stchigel, A.M, & Figueras, M.J. (2012). Atlas of soil Ascomycetes. CBS Biodiversity Series 10, Utrecht.
Gudin, S. (2000). Rose: genetics and breeding. Plant Breeding Reviews, 17, 159-190.
Guo, L.D., Hyde, K.D., & Liew, C.Y. (2000). Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytologist, 147, 617-630.
Han, Z., Mei, W.L., Cui, H.B., & Zeng, Y.B. (2008). Antibacterial constituents from the endophytic fungus Penicillium sp. of mangrove plant Cerbera manghas. Chemical Journal of Chinese Universities, 29(4), 749-752.
Hassan, A. (2007). Novel natural products from endophytic fungi of Egyptian medicinal plants-chemical and biological characterization. PhD Thesis, University of Dusseldorf. P 270.
Hoffman, A.M., Mayer, S.G., Strobel, G.A., Hess, M.W., Sovocool, G.W., & Grange, A.H. (2008). Purification, identification and activity of phomodione, a furandione from an endophytic Phoma species. Phytochemistry, 69(4), 1049-56.
Jamali, S. (2021). First report of Ascotricha chartarum for funga of Iran. Rostaniha, 22(1), 147-149.
Jan, R., Asaf, S., Numan, M., & Kim, K.M. (2021). Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, 11(5), 968.
Jawanjal, A.V., & Barate, D.L. (2017). Studies on endophytes isolated from rose and soyabean. International Journal of Current Microbiology and Applied Sciences, 6(6), 2074-2081.
Júnior, H.T., Fischer, I.H., Camara, M.P.S., & Júnior, N.M. (2010). First report of Colletotrichum boninense infecting yellow passion fruit (Passiflora edulis f. flavicarpa) in Brazil. Australasian Plant Disease Notes, 5(1), 70-72.
Khan, Z., Ahmad, S., Jeragh, A., Alfouzan, W., Al Foudri, H., Hassan, N., Asadzadeh, M., Joseph, L., & Varghese, S. (2019). First isolation of Ascotricha chartarum from bronchoalveolar lavage of two patients with pulmonary infections. New Microbes and New Infections, 28, 11-16.
Kamtekar, S., Keer, V., & Patil, V. (2014). Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation. Journal of Applied Pharmaceutical Science, 4(09), 061-065.
Kheir, E.A., Elhussein, A.A., & Yagi, S.M. (2023). Phenolic composition and biological activity of endophytic fungi isolates inhabited Acacia nilotica. Natural Resources for Human Health 3, 364–369
Kirk, P.M., Stalpers, J.A., Braun, U., Crous, P.W., Hansen, K., Hawksworth, D.L., Hyde, K.D., Lücking, R., Lumbsch, T.H., Rossman, A.Y., & Seifert, K.A. (2013). A without-prejudice list of generic names of fungi for protection under the International Code of Nomenclature for algae, fungi, and plants. IMA fungus, 4, 381-443.
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549.
Kusari, S., Pandey, S.P., & Spiteller, M. (2013). Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry, 91, 81–87.
Maharachchikumbura, S.S., Hyde, K.D., Jones, E.G., McKenzie, E.H., Huang, S.K., Abdel-Wahab, M.A., Daranagama, D.A., Dayarathne, M., D’souza, M.J., Goonasekara, I.D., & Hongsanan, S. (2015). Towards a natural classification and backbone tree for Sordariomycetes. Fungal Diversity, 72, 199-301.
Maharachchikumbura, S.S., Hyde, K.D., Jones, E.G., McKenzie, E.H.C., Bhat, J.D., Dayarathne, M.C., Huang, S.K., Norphanphoun, C., Senanayake, I.C., Perera, R.H., & Shang, Q.J. (2016). Families of Sordariomycetes. Fungal Diversity, 79, 1-317.
Maria, G.L., Sridhar, K.R., & Raviraja, N.S. (2005). Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. Journal of Agricultural Technology, 1, 67-80.
Miguel, P.S.B., Miguel, F.B., Moreira, B.C., de Oliveira, M.N.V., Delvaux, J.C., de Souza Freitas, F., Borges, A.C., & Costa, M.D. (2019). Diversity of the endophytic filamentous fungal leaf community at different development stages of eucalyptus. Journal of Forestry Research, 30, 1093-1103.
Mirtalebi, M., Banihashemi, Z., Sabahi, F., & Mafakheri, H. (2016). Dieback of rose caused by Acremonium sclerotigenum as a new causal agent of rose dieback in Iran. Spanish Journal of Agricultural Research, 14(4), p.24.
More, Y.W., Sharma, M.G., & Raut, R.R. (2015). Estimation of total content of phenol from some endophytic fungi. International Journal of Informative & Futuristic Research, 2(6), 1718-1721.
Nagda, V., Gajbhiye, A., & Kumar, D. (2017). Isolation and characterization of endophytic fungi from Calotropis procera for their antioxidant activity. Asian Journal of Pharmaceutical and Clinical Research, 10(3), 254-258.
Nakasone, K.K. (1988). Studies in Phlebia. Six species with teeth. Mycotaxon, 31(443).
O'Donnell, K., Kistler, H.C., Cigelnik, E., & Ploetz, R.C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America, 95, 2044–2049.
Leslie, J., & Summerell, B. (2006). The Fusarium Laboratory Manual Blackwell Publishing Professional. Ames, IA, USA. Pp. 388.
Petrini, 0., Sieber, T.N., Toti, L., & Viret, O. (1992). Ecology, metabolite production, and substrate utilization in endophytic fungi. Natural Toxins, 1, 185-196.
Rai, M., Rathod, D., Agarkar, G., Dar, M., Brestic, M., Pastore, G.M., & Junior, M.R.M. (2014). Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. Symbiosis, 62, 63-79.
Rusanov, K., Kovacheva, N., Vosman, B., Zhang, L., Rajapakse, S., Atanassov, A., & Atanassov, I. (2005). Microsatellite analysis of Rosa damascena Mill. accessions reveals genetic similarity between genotypes used for rose oil production and old Damask rose varieties. Theoretical and Applied Genetics, 111, 804-9.
Rusanov, K., Kovacheva, N., Stefanova, K., Atanassov, A., & Atanassov, I. (2009). Rosa damascena -genetic resources and capacity building for molecular breeding. Biotechnology & Biotechnological Equipment, 23, 1436-1439.
Saakov, S., & Rieksta, D. (1973). Roses. Zinatne, Riga (in Russian), 1, 102-130.
Sandoval-Denis, M., Guarro, J., Cano-Lira, J.F., Sutton, D.A., Wiederhold, N.P., de Hoog, G.S., Abbott, S.P., Decock, C., Sigler, L., & J. Gene. (2016). Phylogeny and taxonomic revision of Microascaceae with emphasis on synnematous fungi. Studies in Mycology, 83, 193–233.
Schulz, B., Boyle, C., Draeger, S., Rommert, A., & Krohn, K. (2002). Endophytic fungi: a source of novel biologically active secondary metabolites. Mycological Research, 106, 996-1004.
Schieber, A., Stintzing, F.C., & Carle, R. (2001). By-products of plant food processing as a source of functional compounds-recent developments. Trends in Food Science and Technology, 12, 401–413.
Strobel, G.A. (2003). Endophytes as sources of bioactive products. Microbes and Infection, 5, 535-544.
Strobel, G.A., & Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67(4), 491-502.
Summerbell, R.C., Gueidan, C., Schroers, H.J., De Hoog, G.S., Starink, M., Arocha Rosete, Y., Guarro, J., & Scott, J.A. (2011). Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium. Studies in Mycology, 68, 139–162.
Tan, R.X., & Zou, W.X. (2001). Endophytes: a rich source of functional metabolites. Natural Product Reports, 18, 448-59.
von Arx, J.A., Figueras M.J., & Guarro, J. (1988). Sordariaceous Ascomycetes without ascospore ejaculation. Nova Hedwigia, 94, 1–104.
Wang, L.J., Yang, X.S., & He, X.S. (2007). Screening of antibacterial strains from endophytic fungi in Ginkgo leaves. Sichuan Food Ferment, 4, 34-36.
White, T.J., Bruns, T, Lee, S., & Taylor, J.W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (eds.), PCR Protocols: A Guide to Methods and Applications. Academic Press, New York, P. 315-322.
Wianowska, D., Garbaczewska, S., Cieniecka-Roslonkiewicz, A., Dawidowicz, A.L., & Jankowska, A. (2016). Comparison of antifungal activity of extracts from different Juglans regia cultivars and juglone. Microbial Pathogenesis, 100, 263-267.
Wijayawardene, N.N., Hyde, K.D., Rajeshkumar, K.C., Hawksworth, D.L., Madrid, H., Kirk, P.M., Braun, U., Singh, R.V., Crous, P.W., Kukwa, M., & Luecking, R. (2017). Notes for genera: Ascomycota. Fungal Diversity, 86, 1-594.
Wijayawardene, N.N., Hyde, K.D., Lumbsch, H.T., Liu, J.K., Maharachchikumbura, S.S.N., Ekanayaka, A.H., Tian, Q., & Phookamsak, R. (2018). Outline of Ascomycota: 2017. Fungal Diversity, 88, 167-263.
Wylie, A.P. (1955). The history of garden roses. Journal of the Royal Horticultural Society, 80(2), 77–87.
Yadav, P., Yadav, C., Joshi, A., & Meena, M. (2025). Characterization of endophytic fungal community. multi-omics approach to investigate endophyte diversity. Springer Singapore, p. 243-263.
Yang, Y.L., Cai, L, Yu, Z.N., Liu, Z.Y., & Hyde, K.D. (2011). Colletotrichum species on orchids in southwest China. Cryptogamie, Mycologie, 32(3), 229–253.
Yu, H., Zhang, L., Li, L., Zheng, C., Guo, L., Li, W., Sun, P., & Qin, L. (2010). Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiological Reserch, 165, 437-449.
Zhang, P., Zhou, P.P., Jiang, C., Yu, H., & Yu, L.J. (2008). Screening of taxol-producing fungi based on PCR amplification from Taxus. Biotechnology Letters, 30, 2119-2123.
Zhao, Y., Xiong, Z., Wu, G., Bai, W., Zhu, Z., Gao, Y., Parmar, S., Sharma, V. K., & Li., H. (2018). Fungal endophytic communities of two wild Rosa varieties with different powdery mildew susceptibilities. Frontiers in Microbiology, 9(2462), 1-10.
Zhong, S., & Steffenson, B.J. (2001). Virulence and molecular diversity in Cochliobolus sativus. Phytopathology, 91, 469-476.