c3518cb17d976b8

سنتز و ارزیابی عملکرد نانو میله مولیبدن تری اکسید و نانوکامپوزیت مولیبدن تری اکسید-گرافن اکسید برای جذب آفت‌کش آبامکتین از محیط‌زیست

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی ، دانشکده علوم ، دانشگاه جیرفت، جیرفت، ایران

2 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه جیرفت، جیرفت، ایران

3 گروه گیاهپزشکی ، دانشکده کشاورزی ، دانشگاه جیرفت، جیرفت، ایران

چکیده

آفت کش‌های کشاورزی به‌عنوان آلاینده‌های محیط زیستی، تهدید جدی برای سلامت انسان و اکوسیستم‌های طبیعی محسوب می‌شوند. در این پژوهش، نانومیله‌های سوزنی شکل مولیبدن تری‌اکسید (MoO₃) به روش هیدروترمال و نانوکامپوزیت تری اکسید مولیبدن -گرافن اکسید (MoO₃@GO) به‌صورت هتروژن سنتز شدند و کارایی آنها در حذف آفت کش آبامکتین مورد بررسی قرار گرفت. مشخصه‌یابی نانوذرات سنتز شده با استفاده از پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی (SEM) و طیف‌سنجی مادون قرمز (FT-IR) انجام شد. نتایج نشان داد که میانگین اندازه نانومیله‌های MoO₃ حدود 110 نانومتر است. مطالعات جذب نشان داد که هر دو جاذب از بازده جذب بالایی برخوردارند، با این حال نانوکامپوزیت MoO₃@GO  با بازدهی 98% نسبت به نانومیله‌های خالص MoO₃ (95%) عملکرد بهتری داشت. پارامترهای مؤثر در فرآیند جذب شامل غلظت اولیه آفت­کش (5 پی پی ام) ، مقدار جاذب (3 میلی‌گرم)، زمان تماس (15 دقیقه) و pH اسیدی بهینه‌سازی شدند. مدل ایزوترم جذب از نوع لانگمویر بود که نشان‌دهنده جذب تک لایه‌ای است. این مطالعه نشان داد که نانوکامپوزیت MoO₃@GO  می‌تواند به‌عنوان جاذب مؤثری برای حذف آلاینده‌های آلی از محیط‌های آبی مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis and evaluation of efficiency of molybdenum trioxide and MoO3@GO nanorods for adsorption of abamectin pesticide from the environment

نویسندگان [English]

  • Razieh Razavi 1
  • moslem basij 2
  • Zeinab nazari 1
  • sajedeh mohammadi 1
  • zahra khademi 1
  • salman amiri 3
1 Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
2 Department of Plant Protection, Faculty of Agricultural Science, University of Jiroft, Jiroft, Iran
3 Department of Plant Protection, Faculty of Agricultural Science, University of Jiroft, Jiroft, Iran
چکیده [English]

Agricultural pesticides are significant environmental pollutants that cause serious harm to humans and the ecosystem. Among these pesticides is abamectin, which is used as an acaricide. In this study, needle-like molybdenum trioxide (MoO₃) nanorods were synthesized via the hydrothermal method, and a molybdenum trioxide@graphene oxide (MoO₃@GO) nanocomposite was heterogeneously prepared for the removal of the pesticide abamectin. The synthesized nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and infrared spectroscopy (IR). The average size of the MoO₃ nanorods was found to be 110 nm. The adsorption performance of these two materials for abamectin was compared. The results indicated that both adsorbents exhibit high adsorption capacity, with the MoO₃-graphene oxide nanocomposite showing superior adsorption. Key variables such as pesticide concentration, adsorbent dosage, contact time, and pH were investigated. The results demonstrated that the adsorption capacity of MoO₃ nanorods was 95%, while that of the synthesized nanocomposite reached 98%. The adsorption process followed the Langmuir isotherm model. The optimal adsorption conditions were determined as follows: adsorbent dosage of 3 mg, pesticide concentration of 5 ppm, contact time of 15 minutes, and acidic pH.

کلیدواژه‌ها [English]

  • Adsorption
  • Abamectin
  • Nanorod
  • Molybdenum Trioxide
  • Adsorption Isotherm

Extended Abstract

Introduction

 Abamectin is a widely used antiparasitic agent derived from the fermentation products of the soil bacterium Streptomyces avermitilis. Initially developed as a veterinary drug in the 1980s, Abamectin is a mixture of two closely related components: Avermectin B1a and Avermectin B1b, with B1a being the more potent isomer. It has since found applications in agriculture and public health. Known for its efficacy against a variety of pests, including nematodes and arthropods, abamectin works by interfering with the transmission of nerve impulses in target organisms, leading to paralysis and death. Its unique mechanism of action, along with its favorable safety profile when used according to guidelines, has made it a valuable tool in integrated pest management (IPM) programs. In summary, abamectin remains a critical component of pest control strategies in both agricultural and veterinary contexts. Its effectiveness against a broad spectrum of parasites, paired with relatively low toxicity to humans and animals, underscores its importance. However, awareness of its environmental impact and adherence to safety standards are essential to ensure responsible use. Continued research will be vital to balance the benefits of abamectin with potential risks, optimizing its role in sustainable pest management while safeguarding ecosystem health.

 

Materials and methods

 to conduct this research, a 1000 ppm solution of abamectin (purchased from Sigma Aldrich) with 97% purity was prepared. Other materials used in the experiments, including 98% sulfuric acid, pure hydrogen peroxide, pure potassium permanganate, pure graphite, and concentrated hydrochloric acid, were also purchased from Sigma Aldrich.

 

Results and discussion

    needle-like molybdenum trioxide nanorods were synthesized using a hydrothermal method, and a molybdenum trioxide@graphene oxide nanocomposite was synthesized heterogeneously. The characterization of the synthesized nanoparticles was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and infrared spectroscopy (IR), with an average size of 110 nanometers for the molybdenum trioxide nanorods. The results of this study compared these two compounds for the adsorption of abamectin toxin. The XRD pattern of graphene oxide shows sharp peaks at 2θ = 11, 26.5, which is indicating that the graphene oxide is not pure and contains some graphite impurities. The XRD pattern of MoO3 shows sharp peaks at 2θ = 12, 23.5, 27, 28.5, 34, 36.5, 39.5, 47, 49, and 59, corresponding to the formation of molybdenum trioxide, which matches the JCPDS pattern 050508. The peak at 12 corresponds to the (020) plane, the peak at 23 corresponds to the (110) plane, the peak at 27 corresponds to the (040) plane, the peak at 28 corresponds to the (021) plane, the peak at 34 corresponds to the (111) plane, the peak at 36 corresponds to the (041) plane, the peak at 39 corresponds to the (060) plane, the peak at 47 corresponds to the (200) plane, and the peak at 49 corresponds to the (210) plane. The XRD pattern of the nanocomplex shows that all the peaks of molybdenum trioxide are covered by the peaks of graphene oxide carefully. The shortening and broadening of peak 11 and the increasing height and broadening of peak 27 confirm that the peaks of molybdenum trioxide are covered by graphene oxide. The removal of molybdenum trioxide peaks at angles higher than 30° is due to the involvement of molybdenum oxide planes with graphene oxide through van der Waals bonding.

 

Conclusion

    The findings showed that both adsorbents have high adsorption capacity, and the molybdenum trioxide and graphene oxide nanocomplex has a greater adsorption capacity. The variables of toxin concentration, adsorbent amount, contact time, and pH in the adsorption process were examined. The results indicated that the adsorption capacity of the molybdenum trioxide nanorods is 95%, and the capacity of the synthesized nanocomposite is 98%. During condition optimization, it was shown that an adsorbent amount of 3 mg, a toxin concentration of 5 ppm, and a contact time of 15 minutes at acidic pH achieved the highest adsorption. In the present study, needle-shaped molybdenum trioxide nanorods were synthesized using a hydrothermal method, and the molybdenum trioxide nanocomposite was synthesized via a heterogeneous method. Both nanocomposite materials were utilized as adsorbents for the adsorption and removal of the pesticide abamectin from the environment. The results indicate that both nanocompounds have the capability to adsorb abamectin, with the molybdenum trioxide@graphene oxide nanocomposite displaying superior efficiency as an abamectin adsorbent. Kinetic and thermodynamic data for the adsorption process were also calculated.

REFERENCES
Abbasi, A., Hamadanian, M., Gholami, T., Salavati-Niasari, M., & Sadri, N., (2018) Facile preparation of PbCrO4 and PbCrO4 /Ag nanostructure as an effective photocatalyst for degradation of organic contaminants, Separation and Purification Technolog, 5 (2), 571-580.  https://doi.org/10.1016/j.seppur.2018.07.018.
Bokhale N.B., Bomble, R.R. Dalbhanjan, D.D. Mahale, S.P. Hinge, B.S. Banerjee, A.V. Mohod, & Gogate, P.R., (2014), Sonocatalytic and sonophotocatalytic degradation of rhodamine 6G containing wastewaters, Ultrasonics Sonochemistry, 21,  1797-1804. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Bloomquist, J. R., Ion channels as targets for insecticides, Annual Review of Entomology. 41 (1996) 163–190. https://doi.org/10.1146/annurev.en.41.010196.001115.
Campbell W.C., (2012), Ivermectin and abamectin, Springer Science & Business Media. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Campbell, W.C., Fisher, M.H., Stapley, E.O., Albers-Schönberg, G., & Jacob, T.A., (1983), Ivermectin: A potent new antiparasitic agent, Science (80-. ). 221, 823–828. https://doi.org/10.1126/science.6308762.
Chen, Y., Fan, Y., Huang, Y., Liao, X., Wenfeng, X., & Zhang, T., (2024), A comprehensive review of toxicity of coal fly ash and its leachate in the ecosystem, Ecotoxicology and Environmental Safety, 269, 115905. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Chen, X., Qu, Z., Liu, Z., & Ren, G., (2022), Mechanism of oxidization of graphite to graphene oxide by the hummers method, ACS Omega 7, 23503–23510. https://doi.org/10.1021/acsomega.2c01963.
Dionisio A.C., & Rath, S., (2016), Abamectin in soils: analytical methods, kinetics, sorption and dissipation, Chemosphere, 151, 17-29. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Ghalwa, A., Nasser, M., & Farhat N.B., (2015), Removal of abamectin pesticide by electrocoagulation Process using stainless steel and iron electrodes, Journal of Environmental Analytical Chemistry, 2:3 http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Ghafoori, S.A., Mowla, R., Jahani, M., Mehrvar, & P.K. Chan, (2015), Sonophotolytic degradation of synthetic pharmaceutical wastewater: Statistical experimental design and modeling, Journal of Environmental Management, 150, 128-137. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Hu, B., Wu, C., Zhang, Z., & Wang, L., (2014), Sonophotocatalytic degradation of trichloroacetic acid in aqueous solution, Ceramics International ,40,  7015-7021. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Joseph C.G., Puma, G.L., Bono, A., Taufiq-Yap, Y.H., & Krishnaiah, D., (2011), Operating parameters and synergistic effects of combining ultrasound and ultraviolet irradiation in the degradation of 2, 4, 6-trichlorophenol, Desalination, 276, 303-309. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Kralj, M.B. Franko, M., & Trebše, P., (2007), Photodegradation of organophosphorus insecticides-Investigations of products and their toxicity using gas chromatography–mass spectrometry and AChE-thermal lens spectrometric bioassay, Chemosphere, 67  99-107. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Khorasanizadeh, M.H., Monsef, R., Salavati-Niasari, M., Majdi, H.S., Al-Azzawi, W.K., & Hashim, F.S., (2023), Schiff-base ligand assisted synthesis of DyVO4/ AgBr nanocomposites, characterization, and investigation of photocatalytic activity over organic dye contaminants, Arabian Journal of Chemistry, 16, 105020. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Khojasteh, H., Salavati-Niasari, M., & Sangsefidi, F.S., (2018), Photocatalytic evaluation of RGO/TiO2NWs/Pd-Ag nanocomposite as an improved catalyst for efficient dye degradation, Journal of Alloys and Compounds, 746, 611-618. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Kumari, K., Singh, M., Tomar, N., Kumar, A., & Singh, P., (2023). Adsorption of pesticides using graphene oxide through computational and experimental approach. Journal of Molecular Structure. Vol. 1291, article id. 136043.
Mokhtari, P., Ghaedi, M., Dashtian, K., Rahimi, M.R., & Purkait, M.K., (2016), Removal of methyl orange by copper sulfide nanoparticles loaded activated carbon: Kinetic and isotherm investigation, Journal of Molecular Liquids, 219, 299-305. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Mosleh S., Rahimi, M., Ghaedi, M., Dashtian, K., & Hajati, S., (2016), Photocatalytic degradation of binary mixture of toxic dyes by HKUST-1 MOF and HKUST-1-SBA-15 in a rotating packed bed reactor under blue LED illumination: central composite design optimization, RSC Advances ,6 , 17204-17214. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Mosleh S., Rahimi, M., Ghaedi, M., Dashtian, K., & Hajati, S., (2016),  BiPO4/Bi2S3-HKUST-1-MOF as a novel blue light-driven photocatalyst for simultaneous degradation of toluidine blue and auramine-O dyes in a new rotating packed bed reactor: optimization and comparison to a conventional reactor, RSC Advances ,6, 63667-63680. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Meng X., Zhang, Z., & Li, X., (2015), Synergetic photoelectrocatalytic reactors for environmental remediation: A review, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24, 83-101. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Mohammed A.A., & Ali, D.K., (2023), Bentonite-layered double hydroxide composite as potential adsorbent for removal of abamectin pesticide from wastewater, Results in Surfaces and Interfaces, 10, 100099. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Matos, T.A.F., Dias, A.L.N., Reis, A.D.P., Silva, M.R.A., & Kondo, M.M., (2012) , Degradation of Abamectin Using the Photo-Fenton Process, International Journal of Chemical Engineering, 915724. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Soleiman, M., & Rahimi, M.R., (2016), Intensification of abamectin pesticide degradation using the combination of ultrasonic cavitation and visible-light driven photocatalytic process: synergistic effect and optimization study, Ultrasonics Sonochemistry, 21, 1797-1804, http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Nazé, P., (2023), Adiabatic processes like isothermal processes, Physical Review E, 107. https://doi.org/10.1103/PhysRevE.107.064114.
McKellar, Q.A., & Benchaoui, H.A., (1996), Avermectins and milbemycins, Journal of Veterinary Pharmacology and Therapeutics, 19, 331–351. https://doi.org/10.1111/j.1365-2885.1996.tb00062.x.
Rout, D. R., Jena,H.M., Baigenzhenov, O. R. & Bandegharaei, A. H., (2023), Graphene-based maerials for effective adsorption of organic and inorganic pollutants: A critical and comprehensive review. Science of the Total Environments, Volume 863, Article 160871
Nai-Qing, S., Wang, G., Li, Y., & Baia, S., (2020), Removal of abamectin and conventional pollutants in vertical flow constructed wetlands with Fe modified biochar, RSC Advances, 10, 44171. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Omura, S., (1998) Ivermectin, 25 years and still going strong, International Journal of Antimicrobial Agents, 31, 91–98.
Sathishkumar, P., Mangalaraja, R.V., Rozas, O., Mansilla, H.D., Gracia-Pinilla, M., Anandan, S., Gracia-Pinilla, M.A., & Anandan, S., (2014) , Low frequency ultrasound (42 kHz) assisted degradation of Acid Blue 113 in the presence of visible light driven rare earth nanoclusters loaded TiO2 nanophotocatalysts, Ultrasonics Sonochemistry, 21 ,1675-1681. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Shehdeh, J., Khalaf, O., Obaid, A.A., Hammouti, B., Hadda, T.B., Jodeh, W., Haddad, M., & Warad, I., (2014), Adsorption and kinetics Study of abamectin and imidacloprid in greenhouse soil in Palestine, Journal of Materials and Environmental Science. 5 (2), 571-580. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Tadawatta, P., Kawashima, K., Sittiwanichai, S., Thienprasert, T., Mori, T., & Pongprayoon, P., (2025). Exploring the capabilities of nonosized graphene oxide as a pesticide nanosorbent stimulation studies. ACS Omega, 10(9) 8951-8959.
Taghiyeva, N., Hasanova, U., Millet, M., Gardiennet, C., & Gakhramanova, Z., (2024). Synthesis and characterization of novel adsorbent based on functionalization of graphene with Schiff base and reduces schiff base for pesticide removal. Materials 17 (16), 4096.
Vipin, K., Wang, X., & Lee, P.S., (2013) ,Synthesis of pyramidal and prismatic hexagonal MoO3 nanorods using thiourea, CrystEngComm, 15, 7663–7669. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Wang, S. H., Zeng, X. C., Ho, Q. W.  & Zheng, Y. G., (2015) Degradation of abamectin by newly isolated Stenotrophomonas maltophilia ZJB-14120 and characterization of its abamectin-tolerance mechanism. Research in Biotechnology, 166(5):408-418.
Wu, T.Y., Guo, N., Teh, C.Y., & Hay, J.X.W., (2012), Advances in ultrasound technology for environmental remediation, Springer Science & Business Media. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025
Wall, R., & Strong, L., (1987), Environmental consequences of treating cattle with the antiparasitic drug ivermectin, Nature 327, 418–421. https://doi.org/10.1038/327418a0.
Xiong S.F., Yin, Z.L., Yuan, Z.F., Yan, W.B., Yang, W.Y., Liu, J.J., & Zhang, F., (2012), Dual-frequency (20/40 kHz) ultrasonic assisted photocatalysis for degradation of methylene blue effluent: synergistic effect and kinetic study, Ultrasonics Sonochemistry, 19, 756-761. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.
Yuan-Shan, W., Zheng, X., Qi-Wei, H., & Zheng, Y., (2015), Degradation of abamectin by newly isolated Stenotrophomonas maltophilia ZJB-14120 and characterization of its abamectin-tolerance mechanism, Research in Microbiology, 166, 408-418. http://dx.doi.org/10.1016/j.ultsonch.2016.10.025.