c3518cb17d976b8

تولید گیاهان زعفران عاری از ویروس پنهان زعفران با بکارگیری کشت مریستم و گرمادرمانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه تهران، کرج- ایران

2 گروه علوم باغبانی، دانشکده کشاورزی ی، دانشگاه تهران ، کرج- ایران

3 گروه گیاهپزشکی، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

4 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه تهران، کرج - ایران

چکیده

زعفران (Crocus sativus L.) یکی از مهمترین گیاهان دارویی و ادویه­ای در سراسر جهان است. این گیاه منبع غنی آپوکاروتنوئیدها مانند استرهای کروستین، پیکروکروسین و سافرانال است. ویروس پنهان زعفران (saffron latent virus; SaLV)، از جنس Potyvirus و خانواده Potyviridae، شایع‌ترین ویروس شناخته‌شده زعفران در ایران است که بیش از 70 درصد گیاهان زعفران کشور را در مزارع آلوده نموده است. به منظور ویروس‌زدایی گیاهان آلوده زعفران از SaLV، در پژوهش حاضر دو روش کشت مریستم (با اندازه مریستم 1/0، 3/0، 5/0 و 7/0 میلی­متر) و گرمادرمانی به کار برده شد. برای ردیابی ویروس از آزمون سرولوژی ELISA-ACP و مولکولی RT-PCR و RT-qPCR استفاده شد. نتایج نشان داد که بیشترین درصد گیاهان عاری از ویروس بر اساس آزمون الایزا و RT-PCR، به ترتیب با 73/83 و 29/81 درصد در تیمار انفرادی کشت مریستم با اندازه 3/0 میلی­متر و به ترتیب با 36/71 و 36/66 درصد در تیمار انفرادی گرمادرمانی 50 درجه سلسیوس به مدت 60 دقیقه به دست آمد. بیشترین درصد گیاهان عاری از ویروس بر اساس آزمون‌های الایزا، RT-PCR و RT-qPCR در تیمار ترکیبی کشت مریستم با اندازه 3/0 میلی­متر و گرمادرمانی 50 درجه سلسیوس به مدت 60 دقیقه، به میزان 100 درصد بدست آمد. این مطالعه، یک روش موثر برای توسعه بنه­های زعفران بدون ویروس ارائه می‌کند، به طوری‌که می­تواند برای تکثیر گیاه عاری از ویروس و پایداری صنعت تولید زعفران، نقش مهمی ایفا نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Production of saffron plants free of saffron latent virus using meristem culture and thermotherapy

نویسندگان [English]

  • Maryam Rahimy 1
  • Siamak Kalantari 2
  • Akbar Dizadji 3
  • Majid Shokrpour 4
1 Department of Horticultural Science and Landscape, Faculty of Agriculture, University of Tehran, Karaj, Iran
2 Associate professor, Department of Horticulture and Landscape, Faculty of Agriculture, University of Tehran, Karaj, Iran
3 Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
4 Department of Horticultural Science and Landscape, Faculty of Agriculture, University of Tehran, Karaj, ,Iran
چکیده [English]

Saffron (Crocus sativus L.) is one of the most valuable medicinal and spice plants globally and is significantly impacted by the Saffron latent virus (SaLV), a member of the Potyvirus genus (Potyviridae family). In Iran, SaLV infects over 70% of saffron plants in cultivation fields. Saffron is a rich source of apocarotenoids, including crocetin esters, picrocrocin, and safranal, which are crucial for its medicinal and culinary value This study evaluated two virus elimination methods- meristem culture (with meristem sizes of 0.3, 0.5, and 0.7 mm) and thermotherapy (at 50 ℃ for 60 min; at 40 ℃ for 60 min; and 28 ℃ for 21 days) - as well as their combination. SaLV presence was assessed using ELISA, RT-PCR, and RT-qPCR. The highest percentage of SaLV-free plants was achieved with a 0.3 mm meristem culture (83.73% and 81.30%) and thermotherapy at 50 °C for 60 min (71.36% and 66.36%), based on ELISA and RT-PCR, respectively. The combined treatment of 0.3 mm meristem culture and thermotherapy at 50 °C for 60 min resulted in 100% SaLV-free plants, as confirmed by all three detection methods. This study provides an effective strategy for developing virus-free saffron cultivars, supporting sustainable saffron production and propagation. 

کلیدواژه‌ها [English]

  • ELISA
  • RT-PCR
  • RT-qPCR
  • Virus elimination
  • saffron latent virus

Extended Abstract

Introduction

      Saffron, often referred to as "Red Gold," is one of the most expensive medicinal plants globally, with a history of use spanning over 4,000 years. Iran is the leading producer of saffron, contributing more than 90% of the global supply. However, the emergence of Saffron latent virus (SaLV), a newly identified Potyvirus species, has severely impacted saffron cultivation in Iran, with infection rates exceeding 70%. SaLV compromises the quality and yield of saffron, necessitating effective virus elimination strategies. Common methods for producing virus-free plants include meristem culture, thermotherapy, chemotherapy, and their combinations. For instance, thermotherapy combined with meristem culture has successfully eliminated viruses such as bean yellow mosaic virus (BYMV) in gladiolus and apple chlorotic leaf spot virus (ACLSV) in apple cultivars. This study explores the efficacy of meristem culture, thermotherapy, and their combination in eliminating SaLV from saffron plants.

 

Material and Methods

      A total of 530 leaf tissue samples were collected from saffron plants cultivated at the Horticulture Research Center, University of Tehran. Samples were screened for SaLV using a Potyvirus genus-specific antibody (RT-0573/1, DSMZ, Germany). Positive samples (absorbance >3× healthy control at 405 nm) were subjected to meristem culture (0.3, 0.5, and 0.7 mm) and thermotherapy (50 °C for 60 min; 40 °C for 60 min; 28 °C for 21 days). Corm tissues from ELISA-positive plants were treated, while ELISA-negative corms were cultivated without treatment. Post-treatment, SaLV presence was assessed using ACP-ELISA, RT-PCR, and RT-qPCR. Data were analyzed using Tukey’s test in R 4.3.2.

 

Results

    Totally, 420 out of 530 samples (80.7%) tested positive for SaLV. Meristem culture and thermotherapy significantly influenced the percentage of virus-free plants (p < 0.05). Smaller meristem sizes yielded higher SaLV-free rates: 83.73% and 81.29% for 0.3 mm, compared to 38.5% and 30.91% for 0.7 mm, based on ELISA and RT-PCR, respectively. Thermotherapy at 50 °C for 60 min achieved the highest SaLV-free rate (71.36% and 66.36%), while 40 °C for 60 min yielded the lowest (50.98% and 46.47%). The combined treatment of 0.3 mm meristem culture and thermotherapy at 50 °C for 60 min resulted in 100% SaLV-free plants, as confirmed by ELISA, RT-PCR, and RT-qPCR.

 

Conclusion

    This study demonstrates that the combination of 0.3 mm meristem culture and thermotherapy at 50 °C for 60 min effectively eliminates SaLV from saffron plants.  This approach provides a robust method for producing virus-free saffron cultivars, supporting sustainable saffron production and propagation. Future research should explore the scalability and economic feasibility of this method for large-scale applications.

 

منابع

شکرپور، مجید، عابدی، زینب، کلانتری، سیامک و سلامی، سید علیرضا. (1395). بررسی تنوع ژنتیکی برخی نمونه‌های زعفران ایران با استفاده از نشانگرهای ملکولی RAPD و ISSR. زراعت و فناوری زعفران، 4 (4)، 257-267. https://doi.org/10.22048/jsat.2016.38672
REFERENCES
Ágoston, J., Almási, A., Pinczés, D., Sáray, R., Salánki, K., & Palkovics, L. (2024). First report of saffron latent virus in Crocus sativus from Hungary. Plant Disease, 108(2), 540.‏ https://doi.org/10.1094/PDIS-09-23-1765-PDN
Ahrazem, O., Argandoña, J., Castillo, R., Rubio-Moraga, A., & Gómez-Gómez, L. (2016). Identification and cloning of differentially expressed SOUL and ELIP genes in saffron stigmas using a subtractive hybridization approach. PloS One, 11(12), e0168736.‏ https://doi.org/10.1371/journal.pone. 0168736
Bayati, S., Shams-Bakhsh, M., & Moini, A. (2011). Elimination of Grapevine virus A (GVA) by cryotherapy and electrotherapy. Journal of Agricultural Science and Technology, 13(3), 442-450.‏ In Persian. https://doi.org/20.1001.1.16807073.2011.13.3.2.9
Benke, A. P., Krishna, R., Khandagale, K., Gawande, S., Shelke, P., Dukare, S., ... & Mahajan, V. (2023). Efficient elimination of viruses from garlic using a combination of shoot meristem culture, thermotherapy, and chemical treatment. Pathogens, 12(1), 129. https://doi.org/10.3390/ pathogens12010129
Bruni, R., Bellardi, M. G., & Parrella, G. (2016). Change in chemical composition of sweet basil (Ocimum basilicum L.) essential oil caused by alfalfa mosaic virus. Journal of Phytopathology, 164(3), 202-206.‏ https://doi.org/10.1111/jph.12410
Caiola, M. G., & Faoro, F. (2011). Latent virus infections in Crocus sativus and Crocus cartwrightianus. Phytopathologia Mediterranea, 50(2), 175-182.
Cervera, H., Ambrós, S., Bernet, G. P., Rodrigo, G., & Elena, S. F. (2018). Viral fitness correlates with the magnitude and direction of the perturbation induced in the hostˈs transcriptome: the tobacco etch potyvirus—tobacco case study. Molecular Biology and Evolution, 35(7), 1599-1615.‏ https://doi.org/10. 1093/ molbev/msy038
Chakraborty, S. (2016). Transcriptome from saffron (Crocus sativus) plants in Jammu and Kashmir reveals abundant soybean mosaic virus transcripts and several putative pathogen bacterial and fungal genera. BioRxiv, 079186. https://doi.org/10.1101/079186
Chen, J. (2000). Occurrence and control of mosaic disease [turnip mosaic virus] in saffron (Crocus sativus). Zhejiang Nongye Kexue, 3, 132-135.
Gogile, A., Markos, T., Kebede, M., Kidanemariam, D., & Abraham, A. (2024). Elimination of yam mosaic virus from yam using an optimized combination of meristem culture and thermotherapy. Australasian Plant Pathology, 53(2), 185-197. https://doi.org/10.1007/s13313-024-00965-9
González‐Jara, P., Tenllado, F., Martínez‐García, B., Atencio, F. A., Barajas, D., Vargas, M., ... & Díaz‐Ruíz, J. R. (2004). Host‐dependent differences during synergistic infection by Potyviruses with potato virus X. Molecular Plant Pathology, 5(1), 29-35.‏ https://doi.org/10.1111/j.1364-3703.2004.00202.x
Haseli M., Valouzi H. & Dizadji A. (2024). Beet western yellows virus frequently infects Crocus sativus in Iran. Australasian Plant Disease Notes, 19(1). https://doi.org/10.1007/s13314-024-00538-1
Hu, G., Dong, Y., Zhang, Z., Fan, X., Ren, F., & Zhou, J. (2015). Virus elimination from in vitro apple by thermotherapy combined with chemotherapy. Plant Cell, Tissue and Organ Culture (PCTOC), 121, 435-443.‏ https://doi.org/10.1007/s11240-015-0714-6
Kazemi, N., Habashi, A. A., & Asadi, W. (2019). Evaluation of combined treatments of thermotherapy and apical meristem culture efficiencyon virus elimination from in vitro shootlts of Red Flash Apple (Malus pumila Mill.). Journal of Horticultural Science. 33(3), 499-509. https://doi /epdf/10.5555/ 20203567082
Kim, Y., Kim, Y. J., & Paek, K. H. (2021). Temperature-specific vsiRNA confers RNAi-mediated viral resistance at elevated temperature in Capsicum annuum. Journal of Experimental Botany, 72(4), 1432-1448.‏ https://doi.org/10.1093/jxb/eraa527
Křižan, B., Ondrušiková, E., Holleinová, V., Moravcova, K., & Blahova, L. (2009). Elimination of Grapevine fanleaf virus in grapevine by in vivo and in vitro thermotherapy. Horticultural Science, 36(3), 105-108.‏ https://doi.org/10.17221/37/2008-HORTSCI
Kwon, Y. H., Choi, W. I., Kim, H. K., Kim, K. O., Kim, J. H., Huh, Y. S., & Park, W. T. (2022). Efficacy of virus elimination from 'Rehmannia glutinosa' using simultaneous thermotherapy, chemotherapy, and meristem culture. Plant Omics, 15(1), 6-12.‏ https://doi.org/10.21475/ POJ.15.01.22.p3527
Leone, S., Recinella, L., Chiavaroli, A., Orlando, G., Ferrante, C., Leporini, L., & Menghini, L. (2018). Phytotherapic use of the Crocus sativus L. (Saffron) and its potential applications: A brief overview. Phytotherapy Research, 32(12), 2364-2375.‏ https://doi.org/10.1002/ptr.6181
Liu, J., Zhang, X., Yang, Y., Hong, N., Wang, G., Wang, A., & Wang, L. (2016). Characterization of virus-derived small interfering RNAs in Apple stem grooving virus-infected in vitro-cultured Pyrus pyrifolia shoot tips in response to high temperature treatment. Virology Journal, 13, 1-11.‏ https://doi.org/10.1186/s12985-016-0625-0
Lorenzo, C., Shadmani, G., Valouzi, H., Moratalla-López, N., Bahlolzada, H., Sánchez-Gómez, R., ... & Alonso, G. L. (2023). Saffron Stigmas Apocarotenoid Contents from Saffron Latent Virus (SaLV)-Infected Plants with Different Origins and Dehydration Temperatures. Horticulturae, 9(8), 933.‏ https://doi.org/10.3390/horticulturae9080933
Martinez-Fajardo, C., Navarro-Simarro, P., Morote, L., Rubio-Moraga, Á., Mondéjar-López, M., Niza, E., ... & López-Jiménez, A. J. (2024). Exploring the viral landscape of saffron through metatranscriptomic analysis. Virus Research, 345, 199389. https://doi.org/10.1016/ j.virusres.2024.199389
Miglino, R., Jodlowska, A., & Van Schadewijk, A. R. (2005). First report of Narcissus mosaic virus infecting Crocus spp. cultivars in the Netherlands. Plant Disease, 89(3), 342-342. https://doi.org/10.1094/PD-89-0342C
Miljanić, V., Rusjan, D., Škvarč, A., Chatelet, P., & Štajner, N. (2022). Elimination of eight viruses and two viroids from preclonal candidates of six grapevine varieties (Vitis vinifera L.) through in vivo thermotherapy and in vitro meristem tip micrografting. Plants, 11(8), 1064.‏ https://doi.org/10.3390/plants11081064
Moratalla-López, N., Parizad, S., Habibi, M. K., Winter, S., Kalantari, S., Bera, S., ... & Alonso, G. L. (2021). Impact of two different dehydration methods on saffron quality, concerning the prevalence of Saffron latent virus (SaLV) in Iran. Food Chemistry, 337, 127786.‏ https://doi.org/10.1016/j.foodchem.2020.127786
Movi, S., Dizadji, A., Parizad, S., & Zarghani, S. N. (2022). Biological characteristics and genetic variation analyses of saffron latent virus (SaLV) based on genomic P1-Pro and P3 regions. European Journal of Plant Pathology, 164(2), 299-312.‏ https://doi.org/10.1007/s10658-022-02561-3
Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473—497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Nesi, B., Trinchello, D., Lazzereschi, S., Grassotti, A., & Ruffoni, B. (2009). Production of lily symptomless virus-free plants by shoot meristem tip culture and in vitro thermotherapy. HortScience, 44(1), 217-219. https://doi.org/10.21273/HORTSCI.44.1.217
Panattoni, A., Luvisi, A., & Triolo, E. (2013). Elimination of viruses in plants: twenty years of progress. Spanish Journal of Agricultural Research, 11(1), 173-188.‏ http://dx.doi.org/10.5424/sjar/2013111-3201
Parizad, S., Dizadji, A., Habibi, M. K., Winter, S., Kalantari, S., Movi, S., ... & Moratalla-Lopez, N. (2019). The effects of geographical origin and virus infection on the saffron (Crocus sativus L.) quality. Food Chemistry, 295, 387-394.‏ https://doi.org/10.1016/j.foodchem.2019.05.116
Parizad, S., Dizadji, A., Koohi Habibi, M., Winter, S., Kalantari, S., Movi, S., ... & Ayllón, M. A. (2018). Description and genetic variation of a distinct species of potyvirus infecting saffron (Crocus sativus L.) plants in major production regions in Iran. Annals of Applied Biology, 173(3), 233-242.‏ https://doi.org/10.1111/aab.12456
Petrov, N. M., Stoyanova, M. I., & Gaur, R. K. (2024). Characterization and management of economically important viruses on sweet pepper cultivars in Europe. In Pepper Virome (pp. 445-475). Academic Press. https://doi.org/10.1016/B978-0-443-15576-5.00010-1
Ramírez-Malagón, R., Pérez-Moreno, L., Borodanenko, A., Salinas-González, G. J., & Ochoa-Alejo, N. (2006). Differential organ infection studies, potyvirus elimination, and field performance of virus-free garlic plants produced by tissue culture. Plant Cell, Tissue and Organ Culture, 86, 103-110. https://doi.org/10.1007/s11240-006-9102-6
Shabala, S. (2012). Plant stress physiology, CABi Publishing, (Shabala, S., & Bose, J. 2012: 91–126).
Shalitin, D., & Wolf, S. (2000). Cucumber mosaic virus infection affects sugar transport in melon plants. Plant Physiology, 123(2), 597-604.‏ https://doi.org/10.1104/pp.123.2.597
Sharifi Nezamabad, P., Koohi Habibi, M., Dizadji, A., & Kalantari, S. (2015). Elimination of Bean yellow mosaic virus through thermotherapy combined with meristem-tip culture in gladiolus corms. Journal of Crop Protection, 4(4), 533-543.‏ https://doi.org/20.1001.1.22519041.2015.4.4.10.8
Shokrpour, M. (2019). Saffron (Crocus sativus L.) breeding: opportunities and challenges. In Advances in Plant Breeding Strategies: Industrial and Food Crops, edited by Al-Khayri, J., Jain, S., Johnson, D.. Springer, Cham.  : Volume 6, 675-706.‏ https://doi.org/10.1007/978-3-030-23265-8_17
Tan, R., Wang, L., Hong, N., & Wang, G. (2010). Enhanced efficiency of virus eradication following thermotherapy of shoot-tip cultures of pear. Plant Cell, Tissue and Organ Culture (PCTOC), 101, 229-235.‏ https://doi.org/10.1007/s11240-010-9681-0
Valouzi, H., Dizadji, A., Golnaraghi, A., Salami, S.A., Selmi, I., Fontdevila Pareta, N. et al. (2025) First detection of saffron dwarf virus, wheat dwarf virus, wheat dwarf virus-associated alphasatellite and a new putative potyvirus species in saffron in Iran. New Disease Reports, vol.51, e70022. https://doi.org/10.1002/ndr2.70022
Vieira, R. L., da Silva, A. L., Zaffari, G. R., Steinmacher, D. A., de Freitas Fraga, H. P., & Guerra, M. P. (2015). Efficient elimination of virus complex from garlic (Allium sativum L.) by cryotherapy of shoot tips. Acta Physiologiae Plantarum, 37, 1-11. https://doi.org/10.1007/s11738-014-1733-3
Vivek, M., & Modgil, M. (2018). Elimination of viruses through thermotherapy and meristem culture in apple cultivar ‘Oregon Spur-II’. Virus Disease, 29, 75-82. https://doi.org/10.1007/s13337-018-0437-5
Wang, L., Wang, G., Hong, N., Tang, R., Deng, X., & Zhang, H. (2006). Effect of thermotherapy on elimination of Apple stem grooving virus and Apple chlorotic leaf spot virus for in vitro-cultured pear shoot tips. HortScience, 41(3), 729-732.‏ https://doi.org/10.21273/HORTSCI.41.3.729
Wang, M. R., Cui, Z. H., Li, J. W., Hao, X. Y., Zhao, L., & Wang, Q. C. (2018). In vitro thermotherapy-based methods for plant virus eradication. Plant methods, 14, 1-18. https://doi.org/10.1186/s13007-018-0355-y
Wang, M. R., Hamborg, Z., Blystad, D. R., & Wang, Q. C. (2021). Combining thermotherapy with meristem culture for improved eradication of onion yellow dwarf virus and shallot latent virus from infected in vitro‐cultured shallot shoots. Annals of Applied Biology, 178(3), 442-449. https://doi.org/10.1111/aab.12646
Wang, Q., Cuellar, W. J., Rajamaki, M. L., Hirata, Y., & Valkonen, J. P. (2008). Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Molecular Plant Pathology, 9(2), 237-250.‏ https://doi.org/10.1111/j.1364-3703.2007.00456.x
Zheng, H. Y., Wu, X. Y., Han, K. L., Chen, Z. Q., Song, X. J., Peng, J. J., ... & Han, K. L. (2018). First Report of Beet western yellows virus Infecting Crocus sativus in China. Plant Disease, 102(7), 1471-1471. https://doi.org/10.1094/PDIS-10-17-1579-PDN