منابع
شکرپور، مجید، عابدی، زینب، کلانتری، سیامک و سلامی، سید علیرضا. (1395). بررسی تنوع ژنتیکی برخی نمونههای زعفران ایران با استفاده از نشانگرهای ملکولی RAPD و ISSR.
زراعت و فناوری زعفران، 4 (4)، 257-267.
https://doi.org/10.22048/jsat.2016.38672
REFERENCES
Ágoston, J., Almási, A., Pinczés, D., Sáray, R., Salánki, K., & Palkovics, L. (2024). First report of saffron latent virus in Crocus sativus from Hungary. Plant Disease, 108(2), 540. https://doi.org/10.1094/PDIS-09-23-1765-PDN
Ahrazem, O., Argandoña, J., Castillo, R., Rubio-Moraga, A., & Gómez-Gómez, L. (2016). Identification and cloning of differentially expressed SOUL and ELIP genes in saffron stigmas using a subtractive hybridization approach.
PloS One, 11(12), e0168736.
https://doi.org/10.1371/journal.pone. 0168736
Bayati, S., Shams-Bakhsh, M., & Moini, A. (2011). Elimination of Grapevine virus A (GVA) by cryotherapy and electrotherapy. Journal of Agricultural Science and Technology, 13(3), 442-450. In Persian. https://doi.org/20.1001.1.16807073.2011.13.3.2.9
Benke, A. P., Krishna, R., Khandagale, K., Gawande, S., Shelke, P., Dukare, S., ... & Mahajan, V. (2023). Efficient elimination of viruses from garlic using a combination of shoot meristem culture, thermotherapy, and chemical treatment.
Pathogens, 12(1), 129.
https://doi.org/10.3390/ pathogens12010129
Bruni, R., Bellardi, M. G., & Parrella, G. (2016). Change in chemical composition of sweet basil (Ocimum basilicum L.) essential oil caused by alfalfa mosaic virus. Journal of Phytopathology, 164(3), 202-206. https://doi.org/10.1111/jph.12410
Caiola, M. G., & Faoro, F. (2011). Latent virus infections in Crocus sativus and Crocus cartwrightianus. Phytopathologia Mediterranea, 50(2), 175-182.
Cervera, H., Ambrós, S., Bernet, G. P., Rodrigo, G., & Elena, S. F. (2018). Viral fitness correlates with the magnitude and direction of the perturbation induced in the hostˈs transcriptome: the tobacco etch potyvirus—tobacco case study.
Molecular Biology and Evolution, 35(7), 1599-1615.
https://doi.org/10. 1093/ molbev/msy038
Chakraborty, S. (2016). Transcriptome from saffron (Crocus sativus) plants in Jammu and Kashmir reveals abundant soybean mosaic virus transcripts and several putative pathogen bacterial and fungal genera. BioRxiv, 079186. https://doi.org/10.1101/079186
Chen, J. (2000). Occurrence and control of mosaic disease [turnip mosaic virus] in saffron (Crocus sativus). Zhejiang Nongye Kexue, 3, 132-135.
Gogile, A., Markos, T., Kebede, M., Kidanemariam, D., & Abraham, A. (2024). Elimination of yam mosaic virus from yam using an optimized combination of meristem culture and thermotherapy. Australasian Plant Pathology, 53(2), 185-197. https://doi.org/10.1007/s13313-024-00965-9
González‐Jara, P., Tenllado, F., Martínez‐García, B., Atencio, F. A., Barajas, D., Vargas, M., ... & Díaz‐Ruíz, J. R. (2004). Host‐dependent differences during synergistic infection by Potyviruses with potato virus X. Molecular Plant Pathology, 5(1), 29-35. https://doi.org/10.1111/j.1364-3703.2004.00202.x
Haseli M., Valouzi H. & Dizadji A. (2024). Beet western yellows virus frequently infects Crocus sativus in Iran. Australasian Plant Disease Notes, 19(1). https://doi.org/10.1007/s13314-024-00538-1
Hu, G., Dong, Y., Zhang, Z., Fan, X., Ren, F., & Zhou, J. (2015). Virus elimination from in vitro apple by thermotherapy combined with chemotherapy. Plant Cell, Tissue and Organ Culture (PCTOC), 121, 435-443. https://doi.org/10.1007/s11240-015-0714-6
Kazemi, N., Habashi, A. A., & Asadi, W. (2019). Evaluation of combined treatments of thermotherapy and apical meristem culture efficiencyon virus elimination from in vitro shootlts of Red Flash Apple (Malus pumila Mill.). Journal of Horticultural Science. 33(3), 499-509. https://doi /epdf/10.5555/ 20203567082
Kim, Y., Kim, Y. J., & Paek, K. H. (2021). Temperature-specific vsiRNA confers RNAi-mediated viral resistance at elevated temperature in Capsicum annuum. Journal of Experimental Botany, 72(4), 1432-1448. https://doi.org/10.1093/jxb/eraa527
Křižan, B., Ondrušiková, E., Holleinová, V., Moravcova, K., & Blahova, L. (2009). Elimination of Grapevine fanleaf virus in grapevine by in vivo and in vitro thermotherapy. Horticultural Science, 36(3), 105-108. https://doi.org/10.17221/37/2008-HORTSCI
Kwon, Y. H., Choi, W. I., Kim, H. K., Kim, K. O., Kim, J. H., Huh, Y. S., & Park, W. T. (2022). Efficacy of virus elimination from '
Rehmannia glutinosa' using simultaneous thermotherapy, chemotherapy, and meristem culture.
Plant Omics, 15(1), 6-12.
https://doi.org/10.21475/ POJ.15.01.22.p3527
Leone, S., Recinella, L., Chiavaroli, A., Orlando, G., Ferrante, C., Leporini, L., & Menghini, L. (2018). Phytotherapic use of the Crocus sativus L. (Saffron) and its potential applications: A brief overview. Phytotherapy Research, 32(12), 2364-2375. https://doi.org/10.1002/ptr.6181
Liu, J., Zhang, X., Yang, Y., Hong, N., Wang, G., Wang, A., & Wang, L. (2016). Characterization of virus-derived small interfering RNAs in Apple stem grooving virus-infected in vitro-cultured Pyrus pyrifolia shoot tips in response to high temperature treatment. Virology Journal, 13, 1-11. https://doi.org/10.1186/s12985-016-0625-0
Lorenzo, C., Shadmani, G., Valouzi, H., Moratalla-López, N., Bahlolzada, H., Sánchez-Gómez, R., ... & Alonso, G. L. (2023). Saffron Stigmas Apocarotenoid Contents from Saffron Latent Virus (SaLV)-Infected Plants with Different Origins and Dehydration Temperatures. Horticulturae, 9(8), 933. https://doi.org/10.3390/horticulturae9080933
Martinez-Fajardo, C., Navarro-Simarro, P., Morote, L., Rubio-Moraga, Á., Mondéjar-López, M., Niza, E., ... & López-Jiménez, A. J. (2024). Exploring the viral landscape of saffron through metatranscriptomic analysis.
Virus Research,
345, 199389.
https://doi.org/10.1016/ j.virusres.2024.199389
Miglino, R., Jodlowska, A., & Van Schadewijk, A. R. (2005). First report of Narcissus mosaic virus infecting Crocus spp. cultivars in the Netherlands. Plant Disease, 89(3), 342-342. https://doi.org/10.1094/PD-89-0342C
Miljanić, V., Rusjan, D., Škvarč, A., Chatelet, P., & Štajner, N. (2022). Elimination of eight viruses and two viroids from preclonal candidates of six grapevine varieties (Vitis vinifera L.) through in vivo thermotherapy and in vitro meristem tip micrografting. Plants, 11(8), 1064. https://doi.org/10.3390/plants11081064
Moratalla-López, N., Parizad, S., Habibi, M. K., Winter, S., Kalantari, S., Bera, S., ... & Alonso, G. L. (2021). Impact of two different dehydration methods on saffron quality, concerning the prevalence of Saffron latent virus (SaLV) in Iran. Food Chemistry, 337, 127786. https://doi.org/10.1016/j.foodchem.2020.127786
Movi, S., Dizadji, A., Parizad, S., & Zarghani, S. N. (2022). Biological characteristics and genetic variation analyses of saffron latent virus (SaLV) based on genomic P1-Pro and P3 regions. European Journal of Plant Pathology, 164(2), 299-312. https://doi.org/10.1007/s10658-022-02561-3
Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473—497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Nesi, B., Trinchello, D., Lazzereschi, S., Grassotti, A., & Ruffoni, B. (2009). Production of lily symptomless virus-free plants by shoot meristem tip culture and in vitro thermotherapy. HortScience, 44(1), 217-219. https://doi.org/10.21273/HORTSCI.44.1.217
Panattoni, A., Luvisi, A., & Triolo, E. (2013). Elimination of viruses in plants: twenty years of progress. Spanish Journal of Agricultural Research, 11(1), 173-188. http://dx.doi.org/10.5424/sjar/2013111-3201
Parizad, S., Dizadji, A., Habibi, M. K., Winter, S., Kalantari, S., Movi, S., ... & Moratalla-Lopez, N. (2019). The effects of geographical origin and virus infection on the saffron (Crocus sativus L.) quality. Food Chemistry, 295, 387-394. https://doi.org/10.1016/j.foodchem.2019.05.116
Parizad, S., Dizadji, A., Koohi Habibi, M., Winter, S., Kalantari, S., Movi, S., ... & Ayllón, M. A. (2018). Description and genetic variation of a distinct species of potyvirus infecting saffron (Crocus sativus L.) plants in major production regions in Iran. Annals of Applied Biology, 173(3), 233-242. https://doi.org/10.1111/aab.12456
Petrov, N. M., Stoyanova, M. I., & Gaur, R. K. (2024). Characterization and management of economically important viruses on sweet pepper cultivars in Europe. In Pepper Virome (pp. 445-475). Academic Press. https://doi.org/10.1016/B978-0-443-15576-5.00010-1
Ramírez-Malagón, R., Pérez-Moreno, L., Borodanenko, A., Salinas-González, G. J., & Ochoa-Alejo, N. (2006). Differential organ infection studies, potyvirus elimination, and field performance of virus-free garlic plants produced by tissue culture.
Plant Cell, Tissue and Organ Culture, 86, 103-110.
https://doi.org/10.1007/s11240-006-9102-6
Shabala, S. (2012). Plant stress physiology, CABi Publishing, (Shabala, S., & Bose, J. 2012: 91–126).
Shalitin, D., & Wolf, S. (2000). Cucumber mosaic virus infection affects sugar transport in melon plants. Plant Physiology, 123(2), 597-604. https://doi.org/10.1104/pp.123.2.597
Sharifi Nezamabad, P., Koohi Habibi, M., Dizadji, A., & Kalantari, S. (2015). Elimination of Bean yellow mosaic virus through thermotherapy combined with meristem-tip culture in gladiolus corms. Journal of Crop Protection, 4(4), 533-543. https://doi.org/20.1001.1.22519041.2015.4.4.10.8
Shokrpour, M. (2019). Saffron (Crocus sativus L.) breeding: opportunities and challenges. In Advances in Plant Breeding Strategies: Industrial and Food Crops, edited by Al-Khayri, J., Jain, S., Johnson, D.. Springer, Cham. : Volume 6, 675-706. https://doi.org/10.1007/978-3-030-23265-8_17
Tan, R., Wang, L., Hong, N., & Wang, G. (2010). Enhanced efficiency of virus eradication following thermotherapy of shoot-tip cultures of pear. Plant Cell, Tissue and Organ Culture (PCTOC), 101, 229-235. https://doi.org/10.1007/s11240-010-9681-0
Valouzi, H., Dizadji, A., Golnaraghi, A., Salami, S.A., Selmi, I., Fontdevila Pareta, N. et al. (2025) First detection of saffron dwarf virus, wheat dwarf virus, wheat dwarf virus-associated alphasatellite and a new putative potyvirus species in saffron in Iran. New Disease Reports, vol.51, e70022. https://doi.org/10.1002/ndr2.70022
Vieira, R. L., da Silva, A. L., Zaffari, G. R., Steinmacher, D. A., de Freitas Fraga, H. P., & Guerra, M. P. (2015). Efficient elimination of virus complex from garlic (Allium sativum L.) by cryotherapy of shoot tips. Acta Physiologiae Plantarum, 37, 1-11. https://doi.org/10.1007/s11738-014-1733-3
Wang, L., Wang, G., Hong, N., Tang, R., Deng, X., & Zhang, H. (2006). Effect of thermotherapy on elimination of Apple stem grooving virus and Apple chlorotic leaf spot virus for in vitro-cultured pear shoot tips. HortScience, 41(3), 729-732. https://doi.org/10.21273/HORTSCI.41.3.729
Wang, M. R., Cui, Z. H., Li, J. W., Hao, X. Y., Zhao, L., & Wang, Q. C. (2018). In vitro thermotherapy-based methods for plant virus eradication. Plant methods, 14, 1-18. https://doi.org/10.1186/s13007-018-0355-y
Wang, M. R., Hamborg, Z., Blystad, D. R., & Wang, Q. C. (2021). Combining thermotherapy with meristem culture for improved eradication of onion yellow dwarf virus and shallot latent virus from infected in vitro‐cultured shallot shoots. Annals of Applied Biology, 178(3), 442-449. https://doi.org/10.1111/aab.12646
Wang, Q., Cuellar, W. J., Rajamaki, M. L., Hirata, Y., & Valkonen, J. P. (2008). Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Molecular Plant Pathology, 9(2), 237-250. https://doi.org/10.1111/j.1364-3703.2007.00456.x
Zheng, H. Y., Wu, X. Y., Han, K. L., Chen, Z. Q., Song, X. J., Peng, J. J., ... & Han, K. L. (2018). First Report of Beet western yellows virus Infecting Crocus sativus in China. Plant Disease, 102(7), 1471-1471. https://doi.org/10.1094/PDIS-10-17-1579-PDN