c3518cb17d976b8

ارزیابی ترکیبJPS19 velezensis Bacillus وB. thuringiensis E13 برای کنترل پوسیدگی ریشه و طوقه گوجه‌فرنگی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران.

10.22059/ijpps.2025.397451.1007082

چکیده

پوسیدگی ریشه و طوقه گوجه فرنگی که توسط قارچFusarium oxysporum f. sp. radicis-lycopersici (UJ152)  (FORL)  ایجاد می شود، یکی از بیماری‌های مهم خاکزاد و از مهم‌ترین عوامل ایجاد خسارت در تولید گوجه‌فرنگی در سراسر جهان به شمار می‌آید. استفاده از آنتاگونیست‌های خاکزاد برای افزایش عملکرد و حفاظت از محصول، رویکردی امیدوارکننده در سیستم‌های مدرن کشاورزی پایدار است. اثرات کنترل کنندگی ترکیب باکتریایی بر رشد میسلیومی قارچ بیمارگر با کشت در محیط آزمایشگاه بررسی شد. دو استرین Bacillus thuringiensis E13 و B. velezensis JPS19 قادر به تشکیل هاله بازدارنده علیه رشد میسلیومی بیمارگر FORL (UJ152) بودند. در این مطالعه، برای بررسی کاهش شدت بیماری‌زایی و مهار قارچ عامل بیماری، از تیمارهای مختلفی از جمله تلقیح دو استرین باکتریایی B. thuringiensis E13 و B. velezensis JPS19، تلقیح قارچ بیمارگر و ترکیب هر دو استرین باکتریایی، در شرایط گلخانه‌ای مورد ارزیابی قرارگرفت. به طوری که در نمونه شاهد آلوده 33/73 درصد شدت بیماری مشاهده شد در حالی که استفاده از دو استرین باکتریایی شدت بیماری را به 66/6 درصد کاهش داد. سوسپانسیونی از ترکیب دو استرین باکتری فوق الذکر به میزان 109 تهیه و میزان بازدارندگی از رشد بیمارگر در شرایط گلخانه بررسی و مشاهده شد که ترکیب دو استرین‌ یادشده منجر به بهبود رشد گیاه گوجه فرنگی به میزان 83/8 درصد نسبت به شاهد سالم و همچنین منجر به افزایش وزن‌تر ریشه و شاخساره گیاهان تیمار شده با دو استرین باکتری در مقایسه با گیاهان آلوده به (UJ152) FORL گردید. 

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the combination of Bacillus velezensis JPS19 and Bacillus thuringiensis E13 in the control of Fusarium oxysporum f.sp. radicis-lycopersici in tomato

نویسندگان [English]

  • Sara Salari Ganjabad
  • Keivan Behboudi
Department of Phytomedicine, Faculty of Agriculture, University of Tehran, Karaj, Iran
چکیده [English]

Tomato root and crown rot, caused by the fungus Fusarium oxysporum f. sp. radicis-lycopersici (UJ152) (FORL), is a significant soil-borne disease and a major factor causing damage to tomato production worldwide. The use of soil-borne antagonists to enhance yield and crop protection is a promising approach in modern sustainable agricultural systems.The controlling effects of a bacterial combination on the mycelial growth of the pathogen were investigated by culture in the laboratory. Two strains, Bacillus thuringiensis E13 and B. velezensis JPS19, were able to form an inhibition halo against the mycelial growth of the FORL (UJ152) pathogen.In this study, various treatments, including the inoculation of the two bacterial strains (B. thuringiensis E13 and B. velezensis JPS19), inoculation with the pathogenic fungus, and the combination of both bacterial strains, were evaluated under greenhouse conditions to investigate the reduction in disease severity and inhibition of the causal fungus. While 73.33% disease severity was observed in the inoculated control sample, the application of the two bacterial strains reduced the disease severity to 6.66%.A suspension of the combination of the two aforementioned bacterial strains was prepared at 109 concentration, and the inhibition of pathogen growth was investigated under greenhouse conditions. It was observed that the combination of the two mentioned strains resulted in an 8.83% improvement in tomato plant growth compared to the healthy control, and also led to an increase in the fresh weight of the root and shoot of the plants treated with the two bacterial strains compared to the plants inoculated with FORL (UJ152).

کلیدواژه‌ها [English]

  • Bacillus
  • Biological control
  • Fusarium root wilt
  • Tomato

Extended Abstract

Introduction

A suitable method for managing Fusarium oxysporum f. sp. radicis-lycopersici disease is the use of two strains of bacteria, Bacillus velezensis JPS19 and Bacillus thuringiensis E13, in inoculation into the roots of tomato seedlings. Research has shown that the combination of the two strains mentioned above can reduce tomato wilt disease, and also the two bacterial strains increase the severity disease of tomato plants. As a result, this study was conducted to investigate the increase in plant growth and the reduction of FORL pathogen under greenhouse conditions.

 

Material and Methods

This study was carried out using tomato seeds of the Flat variety and involved both in vitro and in vivo experiments. In the in vitro phase, the individual and combined effects of Bacillus thuringiensis E13 and Bacillus velezensis JPS19 on tomato seedling roots were evaluated under controlled laboratory conditions. In the in vivo (greenhouse) experiment, the combined application of the two bacterial strains was tested alongside 8 grams of the FORL pathogen in pots containing sterile soil. The pots were maintained under uniform greenhouse conditions for 21 days and irrigated every two days to assess pathogen suppression and plant growth response.

 

Results

First, the inhibitory and antagonistic effects of the two bacterial strains were evaluated in a Petri dish and showed that the inhibitory effect of the two strains Bacillus thuringiensis E13 and Bacillus velezensis JPS19 in a Petri dish was on the growth of the FORL pathogen mycelium. Then, the antagonistic effect was not observed after cross-culturing the Bacillus velezensis JPS19 and Bacillus thuringiensis E13 strains in a Petri dish towards each other, and the two bacteria were able to cross-grow without creating an inhibitory zone. Three weeks after inoculation of three treatments of 6, 8 and 12 grams of the FORL pathogen fungus to tomato plants, the plants were observed for signs of infection and after calculating the severity of infection, finally the 8 grams of the pathogen fungus treatment was selected as the best pathogen treatment (between 70 and 90 percent infection) and was used in the test under greenhouse conditions. In the study of the effect of bacterial treatments on increasing plant growth indices in greenhouse conditions, three weeks after inoculation of plants with two strains, Bacillus velezensis JPS19 and Bacillus thuringiensis E13, the effect of the two strains was observed in improving the indices of root fresh weight, shoot fresh weight, root length, and shoot length of tomato plants. Also, in the evaluation of bacterial treatments in the disease severity test against the FORL pathogen, the treatments were statistically significant at the one percent probability level, so that in the combined combination of two strains Bacillus thuringiensis E13 and Bacillus velezensis JPS19 with the FORL pathogen, the highest tomato plant weight and the lowest disease severity were observed compared to other treatments, and it was statistically significant with the infected control.

 

Conclusion

Evidence suggests that using different Bacillus strains can help tomato plants grow better and reduce Fusarium wilt disease. Notably, combining Bacillus thuringiensis E13 and Bacillus velezensis JPS19 with the disease-causing fungus (Fusarium oxysporum f. sp. radicis-lycopersici, or FORL) led to the highest plant weight and the lowest disease levels compared to other treatments. These results were significantly better than those from the infected control group. The treatment with JPS19 + FORL and the chemical fungicide (Carbendazim + FORL) showed similar effectiveness. Tests in greenhouse conditions also showed that the two Bacillus strains improved root and shoot weight, as well as root and shoot length, compared to both healthy and infected controls. Statistical analysis of variance with LSD post hoc test confirmed that the Carbendazim + FORL treatment showed significant improvement over the healthy control, especially in plant length and weight were significant at the 1% probability level. Overall, using the combination of the two bacteria not only improved plant growth but also greatly reduced disease severity even when plants were infected with 8 grams of the pathogen. The results show that the combination of two bacterial strains, Bacillus thuringiensis E13 and Bacillus velezensis JPS19, was successful in acting as much as the plants inoculated with the fungicide carbendazim.

  1. منابع

    اعتباریان، ح. ر. 1371.  بررسی بیماری پژمردگی فوزاریومی گوجه‌فرنگـی و مبـارزه شـیمیایی بـا آن در منطقه ورامین. مجله علوم کشاورزی ایران. دوره 3 و 4، شماره 0، 1371.

    سیفی، س 1394. غربالگری باکتری‌های حذف کننده نیترات و نقش آن‌ها در کنترل پژمردگی فوزاریومی گوجه‌فرنگی، رساله دکتری ارائه شده به دانشکده کشاورزی، دانشگاه تهران، 179 ص.

    فصیحیان، ع (1364). پیدایش بیماری پژمردگی فوزاریومی گوجه فرنگی در استان هرمزگان. بیماری‌های گیاهی، 21(4-1)، 29-32.

    منافی، ر. اهری، ب.  ارزنلو، م و ولیزاده، م. 1391. ارزیابی ارقام رایج کشت گلخانه‏ای گوجه فرنگی در استان آذربایجان شرقی به بیماری پژمردگی فوزاریومی و بررسی امکان کنترل زیستی این بیماری. نشریه دانش کشاورزی و تولید پایدار، ‌22 (1) : 147-157.

    RERERENCES

    Ajilogba, C. F., & Babalola, O. O. (2013). Integrated management strategies for tomato Fusarium wilt. Biocontrol Sci, 18(3), 117-127. https://doi.org/10.4265/bio.18.117

    Aleaghaee, S., Rezaee, S., Ebadi, M., & Zamanizadeh, H. (2019). Biological control of Fusarium oxysporum f. sp. lycopersici and induction of defensive enzyme of phenylalanine ammonialyse in tomato by Trichoderma and Bacillus antagonist isolates. journal of microbial world, 12(39), 125-138. http://sanad.iau.ir/fa/Article/1056782

    Banerjee, M., Kalloo, K., & Indu Jalali, I. J. (1990). Studies on Fusarium wilt resistance in Lycopersicon: screening and method of assessment.  (1990): 167-174.

    Bao, J., Fravel, D., O'Neill, N., Lazarovits, G., & Berkum, P. (2002). Genetic analysis of pathogenic and non-pathogenic Fusarium oxysporum from tomato plants. Canadian journal of botany, 80. https://doi.org/10.1139/b02-004

    Bodah, E. T. (2017). Root rot diseases in plants: a review of common causal agents and management strategies. Agric. Res. Technol. Open access J, 5(3), 56-63. https://doi.org/10.19080/ARTOAJ.2017.05.555661

    Bora, T., Özaktan, H., Göre, E., & Aslan, E. (2004). Biological control of Fusarium oxysporum f. sp. melonis by wettable powder formulations of the two strains of Pseudomonas putida. Journal of phytopathology, 152(8-9), 471-475. https://doi.org/https://doi.org/10.1111/j.1439-0434.2004.00877.x

    Cakir, B., Gül, A., & Ozaktan, H. (2014). Response to Fusarium oxysporum f.sp. radicis-lycopersici in tomato roots involves regulation of SA- and ET-responsive gene expressions. European journal of plant pathology, 139, 379-391. https://doi.org/10.1007/s10658-014-0394-9

    Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol, 71(9), 4951-4959. https://doi.org/10.1128/aem.71.9.4951-4959.2005

    Datnoff, L. E., Nemec, S., & Pernezny, K. (1995). Biological control of Fusarium Crown and root rot of tomato in florida using Trichoderma harzianum and glomus intraradices. Biological control, 5(3), 427-431. https://doi.org/10.1006/bcon.1995.1051

    Frommel, M. I., Pazos, G. S., & Nowak, J. (1991). Plant-growth stimulation and biocontrol of Fusarium wilt (Fusarium oxysporum f. sp. lycopersici) by co-inoculation of tomato seeds with Serratia plymuthica and Pseudomonas sp. (1991): 66-73.

    Gullino, M., Albajes, R., & Nicot, P. (2020). Integrated pest and disease management in greenhouse crops and chame.  2020. : Springer International Publishing : Imprint: Springer, 2020. . https://doi.org/10.1007/978-3-030-22304-5

    Hagedorn, C., Gould, W. D., & Bardinelli, T. R. (1989). Rhizobacteria of cotton and their repression of seedling disease pathogens. Appl environ microbiol, 55(11), 2793-2797. https://doi.org/10.1128/aem.55.11.2793-2797.1989

    Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant dis, 87(1), 4-10. https://doi.org/10.1094/pdis.2003.87.1.4

    1. A. L. García, Probanza, A., Ramos, B., Palomino, M., & Francisco Javier Gutiérrez Mañero. (2004). Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie, 24(4), 169-176. https://doi.org/10.1051/agro:2004020

    Jones, C. M., Stres, B., Rosenquist, M., & Hallin, S. (2008). Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Molecular biology and evolution, 25(9), 1955-1966. https://doi.org/10.1093/molbev/msn146

    Kavroulakis, N., Ntougias, S., Besi, M. I., Katsou, P., Damaskinou, A., Ehaliotis, C., Zervakis, G. I., & Papadopoulou, K. K. (2010). Antagonistic bacteria of composted agro-industrial residues exhibit antibiosis against soil-borne fungal plant pathogens and protection of tomato plants from Fusarium oxysporum f.sp. radicis-lycopersici. Plant and soil, 333(1/2), 233-247. https://doi.org/10.1007/s11104-010-0338-x

    Khokhar, I., Haider, M. S., Ali, A., Mukhtar, I., & Mushtaq, S. (2011). Evaluation of antagonistic activity of soil bacteria against plant pathogenic fungi. Pak. J. phytopathol, 23(2), 166-169.

    Kwon, J. W., & Kim, S. D. (2014). Characterization of an antibiotic produced by Bacillus subtilis JW-1 that suppresses Ralstonia solanacearum. J microbiol biotechnol, 24(1), 13-18. https://doi.org/10.4014/jmb.1308.08060

    Lertcanawanichakul, M., & Sawangnop, S. (2008). A comparison of two methods used for measuring the antagonistic activity of Bacillus species. Walailak journal of science and technology, 5, 161-171. https://doi.org/10.2004/wjst.v5i2.86

    Lucas, J., Schloter, M., Durkaya, T., Hartmann, A., & Mañero, F. (2003). Colonization of pepper roots by a plant growth promoting Pseudomonas fluorescens strain. Biology and fertility of soils, 37, 381-385. https://doi.org/10.1007/s00374-003-0608-3

    Manzo, D., Ferriello, F., Puopolo, G., Zoina, A., D'Esposito, D., Tardella, L., Ferrarini, A., & Ercolano, M. R. (2016). Fusarium oxysporum f.sp. radicis-lycopersici induces distinct transcriptome reprogramming in resistant and susceptible isogenic tomato lines. Bmc plant biol, 16, 1-14. https://doi.org/10.1186/s12870-016-0740-5

    Maurya, S., Dubey, S., Kumari, R., & Verma, R. (2019). Management tactics for Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici (Sacc.): A review. Management, 4(5), 1-7.

    Mazzola, M. (2002). Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie van leeuwenhoek, 81(1), 557-564. https://doi.org/10.1023/a:1020557523557

    Minuto, A., Migheli, Q., & Garibaldi, A. (1995). Evaluation of antagonistic strains of Fusarium spp. in the biological and integrated control of Fusarium wilt of cyclamen. Crop protection, 14(3), 221-226 https://doi.org/10.1016/0261-2194(95)00008-A

    Nguyen, M., & Ranamukhaarachchi, S. (2010). Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. Journal of plant pathology, 92 (2), 395-406. https://doi.org/10.4454/jpp.v92i2.183

    Nourozian, J., Etebarian, H. R., & Khodakaramian, G. (2006). Biological control of Fusarium graminearum on wheat by antagonistic bacteria. Songklanakarin J. sci. technol, 28(Suppl 1), 29-38.

    Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends microbiol, 16(3), 115-125. https://doi.org/10.1016/j.tim.2007.12.009

    Özbay, N., & Newman, S. (2004). Fusarium crown and root rot of tomato and control methods. Plant Pathology Journal, 3(1), 9-18. https://doi.org/10.3923/ppj.2004.9.18

    Panno, S., Davino, S., Caruso, A. G., Bertacca, S., Crnogorac, A., Mandić, A., Noris, E., & Matić, S. (2021). A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the mediterranean basin. Agronomy, 11(11), 2188. https://doi.org/10.3390/agronomy11112188

    Pérez-Gutiérrez, R. A., López-Ramírez, V., Islas, Á., Alcaraz, L. D., Hernández-González, I., Olivera, B. C., Santillán, M., Eguiarte, L. E., Souza, V., Travisano, M., & Olmedo-Alvarez, G. (2013). Antagonism influences assembly of a Bacillus guild in a local community and is depicted as a food-chain network. The isme journal, 7(3), 487-497. https://doi.org/10.1038/ismej.2012.119

    Quinet, M., Angosto, T., Yuste-Lisbona, F. J., Blanchard-Gros, R., Bigot, S., Martinez, J. P., & Lutts, S. (2019). Tomato fruit development and metabolism. Front plant sci, 10, 1554. https://doi.org/10.3389/fpls.2019.01554

    Raymond, B. (2017). The biology, ecology and taxonomy of Bacillus thuringiensis and related bacteria. In (pp. 19-39). https://doi.org/10.1007/978-3-319-56678-8_2

    Singh, B., Dawson, L., Macdonald, C., & Buckland, S. (2009). Impact of biotic and abiotic interaction on soil microbial communities and functions: A field study. Applied soil ecology, 41(3), 239-248. https://doi.org/10.1016/j.apsoil.2008.10.003

    Szczechura, W., Staniaszek, M., & Habdas, H. (2013). Fusarium oxysporum f. sp. radicis-lycopersici – the Cause of Fusarium crown and root rot in tomato cultivation. Journal of plant protection research, 53. https://doi.org/10.2478/jppr-2013-0026

    Vaidya, R., Roy, S., Macmil, S., Gandhi, S., Vyas, P., & Chhatpar, H. S. (2003). Purification and characterization of chitinase from alcaligenes xylosoxydans. Biotechnol Lett, 25(9), 715-717. https://doi.org/10.1023/a:1023406630791

    Weller, D. M. (1988). Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual review of phytopathology, 26(1), 379-407. https://doi.org/10.1146/annurev.py.26.090188.002115

    Yamamoto, I., Komada, H., Kuniyasu, K., Saito, M., & Ezuka, A. (1974). A new race of Fusarium oxysporum f. sp. lycopersici inducing root rot of tomato. Annual report of the kansai plant protection society, 16(0), 17-29. https://doi.org/10.4165/KAPPS1958.16.0_17