c3518cb17d976b8

کنترل علف‌های هرز برنج نشایی توسط پهپاد در سیستم‌های مختلف آبیاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش گیاهپزشکی، موسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران

2 گروه ساماندهی و بهبود نظام‌های بهره‌برداری از ماشین، مرکز توسعه صنایع و مکانیزاسیون، وزارت جهاد کشاورزی، تهران، ایران

10.22059/ijpps.2025.400526.1007090

چکیده

با توجه به افزایش استفاده از پهپادهای سمپاش در کشاورزی، این پژوهش با هدف بررسی تأثیر روش آبیاری و حجم محلول بر کارایی پهپاد در کنترل علف‌های هرز در کشت نشایی برنج، با استفاده از علف‌کش پیش‌آمیخته سای‌هالوفوپ‌بوتیل + پنوکسولام (150 g a.i. ha-1، OD 6%) انجام شد. آزمایش در قالب طرح کرت‌های خردشده بر پایه بلوک‌های کامل تصادفی در چهار تکرار انجام شد که در آن، فاکتور اصلی شامل دو روش آبیاری (غرقاب دائم و آبیاری تناوبی) و فاکتور فرعی شامل پنج حجم محلول (۱۰، ۲۰، ۴۰، ۸۰ و ۱۶۰ لیتر در هکتار) بود. تیمارهای شاهد شامل سمپاش پشتی (۳۵۰ لیتر در هکتار)، عدم کنترل علف‌های هرز و وجین دستی بود. برازش مدلهای رگرسیونی لجستیک نشان داد که حجم محلول برای ۹۰ درصد کاهش زیست‌توده علف‌های هرز در روش آبیاری غرقاب دائم برای سوروف و پیزور به‌ترتیب 13/14 و 6/15 و در روش تناوبی 06/24 و 02/58 لیتر در هکتار بود. بیشترین عملکرد اقتصادی در روش آبیاری غرقاب (4331 کیلوگرم در هکتار) در حجم 20 لیتر در هکتار و در آبیاری تناوبی (3874 کیلوگرم در هکتار) در حجم محلول 80 لیتر در هکتار به‌دست آمد که از نظر آماری تفاوت معنی‌داری با حجم‌های بالاتر، سمپاش پشتی و شاهد وجین دستی نداشتند. با توجه به خسارت بالای 90 درصد علف‌های هرز در شاهد عدم کنترل و کارایی مناسب پهپاد؛ استفاده از سمپاشی هوایی به‌دلیل کمبود کارگر و سرعت بالاتر قابل توصیه است.

کلیدواژه‌ها


عنوان مقاله [English]

Drone-based weed control in transplanted rice under different irrigation systems

نویسندگان [English]

  • Maryam Ashouri 1
  • Bijan Yaghoubi 1
  • Madadali Rostami 2
1 Department of Plant Protection, Rice Research Institute of Iran, Agriculture Research, Education, and Extension Organization (AREEO), Rasht, Iran
2 Department of Organization and Improvement of Machinery Utilization Systems, Center for Industry Development and Mechanization, Ministry of Agriculture Jihad, Tehran, Iran.
چکیده [English]

Considering the increasing use of spraying drones in agriculture, this study aimed to evaluate the effects of irrigation method and spray carrier volume on the efficacy of drones in weed control in transplanted rice cultivation, using a premixed herbicide containing cyhalofop-butyl + penoxsulam (150 g a.i. ha⁻¹, OD 6%). The experiment was conducted as a split-plot arrangement of treatments, with the main factor being two irrigation methods (continuous flooding and intermittent irrigation) and the sub-factor consisting of five carrier volumes (10, 20, 40, 80, and 160 L ha⁻¹). Control treatments included a conventional backpack sprayer (350 L ha⁻¹), an untreated control, and manual weeding. Logistic regression models indicated that the spray carrier volume required for a 90% reduction in weed biomass under continuous flooding was 14.13 and 15.6 L ha⁻¹ for Echinochloa crus-galli and Bolboschoenus planiculmis, respectively, while under intermittent irrigation, the values were 24.06 and 58.02 L ha⁻¹, respectively. The highest economic yield was obtained under continuous flooding (4331 kg ha⁻¹) at a carrier volume of 20 L ha⁻¹ and under intermittent irrigation (3874 kg ha⁻¹) at 80 L ha⁻¹, with no statistically significant difference compared to higher carrier volumes, backpack spraying, or manual weeding. Given the more than 90% weed damage observed in the untreated control and the satisfactory efficacy of drone spraying, aerial application is recommended due to labor shortages and higher operational speed.

کلیدواژه‌ها [English]

  • Cyhalofop-butyl + penoxsulam herbicide
  • Foliar application
  • Spray carrier volume
  • Unmanned aerial vehicles

Extended Abstract

Introduction

The adoption of spraying drones as an advanced, intelligent technology offers a strategic response to labor shortages and economic challenges in rice production. In addition to improving operational efficiency, these systems enhance input use efficiency and reduce environmental impacts, thereby supporting sustainable agricultural practices. Nevertheless, despite their growing adoption among Iranian farmers, empirical evidence on the effectiveness of drones in weed management relative to conventional backpack sprayers remains limited. While backpack sprayers in transplanted rice systems typically apply herbicides at carrier volumes of 150–350 L ha⁻¹, aerial drone applications are often conducted at much lower volumes—approximately 10 L ha⁻¹—without sufficient scientific validation. To address this gap, the present study aimed to (1) assess the impact of carrier volume on the efficiency of drone-based herbicide applications for weed control in rice, and (2) determine the optimal spray volume under flooded and non-flooded irrigation regimes in northern Iran.

 

 

Method

The experiment was conducted during the 2024 growing season at the Rice Research Institute of Iran (Rasht) using a split-plot arrangement in a randomized complete block design with four replications. The post-emergence herbicide cyhalofop-butyl + penoxsulam (OD 6%) was applied as the treatment. Main plots were assigned to two irrigation regimes—continuous flooding and intermittent irrigation—while subplots comprised five drone spray carrier volumes (10, 20, 40, 80, and 160 L ha⁻¹). Additional treatments included a conventional backpack sprayer at 350 L ha⁻¹, hand weeding, and an untreated control. The main plots (90 × 18 m) and subplots (45 × 9 m) were designed according to the UAV spraying width, with buffer zones equal in size to the subplots established between them. Smaller untreated control plots (3 × 3 m) were randomly placed within these buffer zones and protected with plastic covers to prevent herbicide drift, which were removed two hours after spraying. Spraying was performed using a hexacopter drone (Model S10) and a battery-powered Matabi backpack sprayer. Treatment effects were evaluated based on visual assessments of weed control and destructive sampling for weed biomass, weed density, rice grain yield, and yield components. Data were analyzed using the GLM procedure in SAS 9.4, with ANOVA appropriate for the split-plot design to assess the effects of irrigation method, spray carrier volume, and their interaction. Due to significant interactions for most variables, nonlinear regression models were fitted in SigmaPlot 15 to identify best-fitting functions describing weed response and rice performance under different treatments. Weed density and biomass, as well as rice biomass, biological yield, and grain yield, were all fitted using four-parameter logistic models.

 

Results

The results showed that the density of barnyardgrass (Echinochloa crus-galli) and bulrush (Bolboschoenus planiculmis), as well as rice yield, were significantly affected by irrigation method, carrier volume, and their interaction. Increasing carrier volume reduced weed density and biomass while increasing rice yield; however, the effect of carrier volume was more pronounced under continuous flooding than under intermittent irrigation. Under intermittent irrigation, the average carrier volume required to achieve 50% and 90% biomass reduction was nearly twice as high for barnyardgrass, while for bulrush, it was about twice as high for 50% reduction and approximately four times higher for 90% reduction than under continuous flooding. Therefore, bulrush exhibited greater tolerance to the herbicide compared to barnyardgrass, requiring, on average, approximately 36% more carrier volume to achieve 50% biomass reduction under intermittent irrigation and about 55% more under continuous flooding. Rice biomass, biological yield, and economic yield under continuous flooding reached the median biological response level at a lower carrier volume than under intermittent irrigation. Logistic model analysis indicated that the maximum statistically significant economic yield occurred at carrier volumes of 80 L ha⁻¹ under intermittent irrigation and 20 L ha⁻¹ under continuous flooding, representing an approximate 11.3% yield reduction in intermittent irrigation compared with continuous flooding. No statistically significant differences were observed in the evaluated parameters between carrier volumes of 20, 40, 80, and 160 L ha⁻¹ under continuous flooding, and between 80 and 160 L ha⁻¹ under intermittent irrigation, when compared with the conventional backpack sprayer. However, relative to hand weeding, these treatments showed a 26% and 9% lower efficacy for barnyardgrass biomass suppression under intermittent and continuous flooding, respectively, and a 30% lower efficacy for bulrush biomass suppression under intermittent irrigation. Across treatments, the maximum economic yield at the optimal carrier volumes under continuous flooding and intermittent irrigation was 4331 and 3914 kg ha⁻¹, respectively, indicating an approximate 10% reduction in yield under intermittent irrigation.

 

Conclusions

In post-emergence herbicide applications, this study demonstrated that applying cyhalofop-butyl + penoxsulam under flooded conditions resulted in significantly more effective weed control than under drained conditions. This enhanced efficacy is attributed to the physicochemical properties of the oil-based OD formulation, which improve herbicide stability, ensure uniform spread, and facilitate penetration in water-saturated environments, thereby increasing absorption through aerial plant tissues. In addition, physiological stresses induced by flooding—such as hypoxia, toxic gas accumulation, and restricted root growth—further weaken weed vigor and enhance their susceptibility to herbicidal action. Collectively, these factors contributed to superior weed suppression, reduced required spray carrier volumes, and improved biological and economic performance of rice under the specific agro-climatic conditions of northern Iran.

Given that increased spray carrier volumes do not compromise herbicide efficacy or crop yield, the adoption of higher application carrier volumes is advisable, particularly for high-biomass improved rice cultivars. Moreover, when formulation compatibility and technical justification are ensured, the concurrent or sequential application of herbicides with fungicides or insecticides using drones is recommended under appropriate conditions.

The drone sprayer demonstrated performance comparable to conventional backpack sprayers, with no significant differences in weed control efficacy or rice yield between methods. Additionally, due to higher application speed, lower water consumption for spray preparation, and reduced manual labor reliance, drones are a reliable alternative to traditional spraying.

Although this study confirms the efficacy of drone spraying for weed control in transplanted rice, further investigation of its technical and environmental aspects remains essential. Future research should prioritize integrating pre- and post-emergence herbicides to reduce spray carrier volumes, evaluating herbicide formulations under field conditions, determining optimal application volumes across Iran’s diverse climatic regions, assessing the physical properties of sprays and the role of adjuvants, and comparing the environmental impacts of aerial spraying with those of conventional methods to promote sustainable agriculture.

منابع

اسماعیلی،م.ع.، احمدی خطیر، م.، عباسی, ر.، و کاوه، م. (1401). ارزیابی صفات مورفولوژیک، عملکرد و اجزای عملکرد ارقام مختلف برنج (Oryza sativa L.) در کشت مستقیم در رقابت با علف‌های هرز. دانش کشاورزی وتولید پایدار, 32(2)، 145-159.‎ https://doi.org/10.22034/saps.2021.44978.2650.
باقری، ن.، نیک‌روز، ص.، صفری، م.، و شیخی گرجان، ع. (1403). ارزیابی عملکرد پهپاد سمپاش در کنترل شته کلزا. ماشین‌های کشاورزی، 14(2)، 146-135. https://doi.org/10.22067/jam.2022.79329.1129.
صفائی‌نژاد، م.، قاسمی‌نژاد رایینی، م.، و تاکی، م. (1404). ارزیابی مزرعه‌ای و اقتصادی استفاده از پهپاد سم‌پاش در مقایسه با سم‌پاش بوم‌دار به‌منظور کنترل علف‌های هرز و بیماری زنگ زرد در مزارع گندم. ماشین‌های کشاورزی، 15 (4)، 587-603. https://doi.org/10.22067/jam.2025.91236.1322.
صفری، م.، باقری، ن.، شیخی گرجان، ع.، و ظریف نشاط، س. (1401). ارزیابی و مقایسه پهپاد سمپاش جهت کنترل آفت توتا در محصول گوجه‌فرنگی. تحقیقات سامانه‌ها و مکانیزاسیون کشاورزی، 23(1)، 16-84. https://doi.org/10.22092/amsr.2023.361037.1435.
صفری، م.، باقری، ن.، و شیخی گرجان، ع. (1402). ارزیابی فنی و اقتصادی استفاده از پهپاد سمپاش در مقایسه با سمپاش‌های رایج برای کنترل کرم هلیوتیس‌ گوجه‌فرنگی. تحقیقات سامانه‌ها و مکانیزاسیون کشاورزی، 24 (85)، 91-110. https://doi.org/10.22092/amsr.2024.364474.1474.
صفری، م.، و شیخی گرجان، ع. (1399). مقایسه پهپاد با سمپاش تراکتوری لانس‌دار در کنترل زنجرک خرما. دانش گیاهپزشکی ایران، 13(1)، 51-26. https://doi.org/10.22059/ijpps.2020.281898.1006894.
ظریف نشاط، س.، سعیدی راد، م.ح.، صفری، م.، معتمدالشریعتی، ح. ر. و ناصری، م. (1401). ارزیابی فنی پهپاد سمپاش برای مبارزه با علف‌های هرز گندم و مقایسه‌ی آن با روش‌های مرسوم. تحقیقات سامانه‌ها و مکانیزاسیون کشاورزی، 23(82)، 53-70. https://doi.org/10.22092/amsr.2022.360045.1427.
کشتکار، ا.، ساسان‌فر، ح.، علی‌وردی، ا.، و زند، ا. (140۲). کاربرد پخش‌سطحی علف‌کش‌ها با استفاده از پهپاد سمپاش: بله یا خیر؟ در مجموعه مقالات دهمین همایش ملی علوم علف‌های هرز ایران (صص ۵۹۶–۶۰۱). همدان: انجمن علوم علف‌های هرز ایران.
نوروزیه، ش.، رضایی اصل، ع.، جوکار، م.، و شفیع‌پور، ا.م. (1401). ارزیابی کیفیت پاشش پهپاد سمپاش در مقایسه با سمپاش‌های رایج در مزرعه پنبه. پژوهش‌های پنبه ایران، 10(1)، 109-132. https://doi.org/10.22092/ijcr.2023.360187.1187.
یعقوبی، ب. (1400). مطالعه کارایی علف‌کش پنوکسولام + سای‌هالوفوپ‌بوتیل (OD 6%) در کنترل علف‌های هرز برنج [گزارش نهایی طرح پژوهشی]. مؤسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی.
REFERENCES
Ampong-Nyarko, K., & De Datta, S. K. (1991). A handbook for weed control in rice. Los Baños, Philippines: International Rice Research Institute.
Bagheri, N., Safari, M., & Garjan, A. S. (2024). Performance evaluation of the UAV sprayer in controlling Brevicoryne Brassicae L. pest in Canola. Performance Evaluation, 14(2), 135-146. https://doi.org/10.22067/jam.2022.79329.1129. (In Persian).
Bharad, N. B., Vagadia, V. R., Lakhani, A. L., Khanpara, B. M., & Dulawat, M. S. (2024). A comprehensive review of unmanned aerial vehicle (UAV) sprayers used in modern agriculture. Journal of Scientific Research and Reports, 30(10), 573-585. https://doi.org/10.9734/jsrr/2024/v30i102483.
Bir, M. S. H., Ali, M. A., Aktar, M. M., Park, K. W., Shahbaz, M., Chong, K. P., ... & Ondrasek, G. (2024). Growth competition between rice (Oryza sativa) and barnyardgrass (Echinochloa oryzicola) under varying mono-/mixed cropping patterns and air temperatures. Agronomy, 14(3), 574. https://doi.org/10.3390/agronomy14030574.
Brim-DeForest, W. B., Al-Khatib, K., & Fischer, A. J. (2021). Emergence and early growth of multiple herbicide–resistant and -susceptible late watergrass (Echinochloa phyllopogon). Weed Technology, 36(1), 101-109. https://doi.org/10.1017/wet.2021.86.
Camargo, E. R., Senseman, S. A., Haney, R. L., Guice, J. B., & McCauley, G. N. (2013). Soil residue analysis and degradation of saflufenacil as affected by moisture content and soil characteristics. Pest management science, 69(12), 1291-1297. https://doi.org/10.1002/ps.3494.
Castelani, P., Antunes, M. C., & Leal, F. (2016). Oil dispersion formulations: Stability assessment and field trials. In 35th Symposium on Pesticide Formulation and Delivery Systems: Pesticides and Adjuvant Formulations in 2014 (pp. 1–14). ASTM International. https://doi.org/10.1520/STP1587201401292.
Chauhan, B. S. (2012). Weed ecology and weed management strategies for dry-seeded rice in Asia. Weed Technology, 26(1), 1-13. https://doi.org/10.1614/WT-D-11-00105.1.
Chauhan, B. S. (2021). Differential germination response of Navua sedge (Cyperus aromaticus) populations to environmental factors. Weed Science, 69(6), 673-680. https://doi.org/10.1017/wsc.2021.48.
Chauhan, B. S., & Johnson, D. E. (2008). Germination ecology of Chinese sprangletop (Leptochloa chinensis) in the Philippines. Weed Science, 56, 820–825. https://doi.org/10.1614/WS-08-070.1.
Chauhan, B. S., & Johnson, D. E. (2009). Ecological studies on Cyperus difformis, Cyperus iria and Fimbristylis miliacea: Three troublesome annual sedge weeds of rice. Annals of Applied Biology, 155(1), 103-112.
Chauhan, B. S., & Johnson, D. E. (2011). Growth response of direct-seeded rice to oxadiazon and bispyribac-sodium in aerobic and saturated soils. Weed Science, 59(1), 119-122. https://doi.org/10.1614/WS-D-10-00075.1.
Chauhan, B. S., Kumar, V., & Mahajan, G. (2014). Research needs for improving weed management in rice. Indian Journal of Weed Science, 46(1), 1-13.
Chen, G. Q., An, K., Chen, Y., & Zhuang, X. X. (2023). Double-spraying with different routes significantly improved control efficacies of herbicides applied by unmanned aerial spraying system: A case study with rice herbicides. Crop Protection, 167, 106203. https://doi.org/10.1016/j.cropro.2023.106203.
Diao, X., Silver, J., Takeshima, H., & Zhang, X. (2020). An evolving paradigm for Africa and synthesis of the lessons from Asia. In X. Diao, H. Takeshima, & X. Zhang (Eds.), An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia? (pp. 3–67). International Food Policy Research Institute (IFPRI). https://doi.org/10.2499/9780896293809.
Dorji, S., Chauhan, B. S., Baltazar, A. M., & Johnson, D. (2013). Effect of flooding depth and pretilachlor rate on emergence and growth of three rice weeds: Junglerice (Echinochloa colona), smallflower umbrella sedge (Cyperus difformis), and Ludwig (Ludwigia hyssopifolia). Canadian Journal of Plant Protection, 1, 43–48.
Esmaeli, M.A., Ahamadi khatir, M., Abbasi, R., & Kaveh, M. (2022). Evaluation of Morphological Traits, Yield and Yield Components of Different Rice Cultivars (Oryza sativa L.) in Direct Cultivation in Competition with Weeds. Journal of Agricultural Science and Sustainable Production, 32(2), 145-159. https://doi.org/10.22034/saps.2021.44978.2650. (In Persian).
Gašić, S., Brkić, D., & Tomašević, A. (2011). Oil dispersion with abamectin as active ingredient. Pesticidi i fitomedicina, 26(4), 409–413. https://doi.org/10.2298/PIF1104409G.
Gugan, G., & Haque, A. (2023). Path planning for autonomous drones: Challenges and future directions. Drones, 7(3), 169. https://doi.org/10.3390/drones7030169.
Hafeez, A., Husain, M. A., Singh, S. P., Chauhan, A., Khan, M. T., Kumar, N., ... & Soni, S. K. (2022). Implementation of drone technology for farm monitoring & pesticide spraying: A review. Information Processing in Agriculture, 9(1), 1-13. https://doi.org/10.1016/j.inpa.2022.02.002.
Hazrati, Z., Yaghoubi, B., Hosseini, P., & Chauhan, B. S. (2023). Herbicides for monochoria (Monochoria vaginalis) control in transplanted rice. Weed Technology, 37(6), 598-605. https://doi.org/10.1017/wet.2023.50.
Hill, J. E., Mortimer, A. M., Namuco, O. S., & Janiya, J. D. (2001). Water and weed management in direct-seeded rice: Are we ahead in the right decision? In Proceedings of the International Rice Research Conference (Los Baños, Philippines, March 31–April 3) (pp. 491–510). International Rice Research Institute.
Huang, Z., Wang, C., Li, Y., Zhang, H., Zeng, A., & He, X. (2023). Field evaluation of spray drift and nontargeted soybean injury from unmanned aerial spraying system herbicide application under acceptable operation conditions. Pest Management Science, 79(3), 1140–1153. https://doi.org/10.1002/ps.7285.
Jeevan, N., Pazhanivelan, S., Kumaraperumal, R., Ragunath, K., Arthanari, P. M., Sritharan, N., ... & Manikandan, S. (2023). Effect of different herbicide spray volumes on weed control efficiency of a battery-operated unmanned aerial vehicle sprayer in transplanted rice (Oryza sativa L.). Journal of Applied & Natural Science, 15(3), 972–977. https://doi.org/10.31018/jans.v15i3.4753.
Junkes, G. V., Avila, L. A., Kemmerich, M., Gehrke, V. R., Fipke, M. V., & Camargo, E. R. (2022). Imidazolinone herbicide dissipation in rice fields as affected by intermittent and continuous irrigation. Advances in Weed Science, 40, e020220094. https://doi.org/10.51694/AdvWeedSci/2022;40:00006.
Kala, S., Agarwal, A., Kant, K., Mishra, B. K., Sogan, N., Kumar, N., & Kumar, J. (2023). An environmentally benign oil dispersion/phytoextract system for improved retention upon foliage and control of aphids in spice crops. Journal of Cleaner Production, 414, 137449. https://doi.org/10.1016/j.jclepro.2023.137449.
Kent, R. J., & Johnson, D. E. (2001). Influence of flood depth and duration on growth of lowland rice weeds, Côte d’Ivoire. Crop Protection, 20(8), 691–694. https://doi.org/10.1016/S0261-2194(01)00034-5.
Keshtkar, E., Sasanfar, H., Aliverdi, A., & Zand, E. (2023). Broadcast application of herbicides using drone sprayers: Yes or no? In Proceedings of the 10th National Iranian Weed Science Congress (pp. 596–601). Hamedan, Iran: Iranian Weed Science Society. (In Persian).
Kim, J. K., Kang, Y. S., Lee, M. H., Kim, S. S., & Park, S. T. (2001). Wet-seeded rice cultivation technology in Korea. In S. Peng & B. Hardy (Eds.), Rice research for food security and poverty alleviation (pp. 545–560). International Rice Research Institute.
Kim, S. K., Ahmad, H., Moon, J. W., & Jung, S. Y. (2021). Nozzle with a feedback channel for agricultural drones. Applied Sciences, 11(5), 2138. https://doi.org/10.3390/app11052138.
Klauser, F., & Pauschinger, D. (2021). Entrepreneurs of the air: Sprayer drones as mediators of volumetric agriculture. Journal of Rural Studies, 84, 55-62. https://doi.org/10.1016/j.jrurstud.2021.02.016.
Koger, C. H., Dodds, D. M., & Reynolds, D. B. (2007). Effect of adjuvants and urea ammonium nitrate on bispyribac efficacy, absorption, and translocation in barnyardgrass (Echinochloa crus-galli). I. Efficacy, rainfastness, and soil moisture. Weed Science, 55(5), 399-405. https://doi.org/10.1614/WS-06-146.1.
Lu, J., Oookawa, T., & Hirasawa, T. (2000). The effects of irrigation regimes on the water use, dry matter production, and physiological responses of paddy rice. Plant and Soil, 223, 209–218. https://doi.org/10.1023/A:1004898504550.
Maazi Kajal, V., Yaghoubi, B., Farahpour, A., Mehrpouyan, M., & Vahedi, A. (2013). Comparison of the efficacy of penoxsulam with some common paddy rice herbicides. Cereal Research, 2(3), 223–235.
Mandal, M., Jain, R., Pandey, A., & Pandey, R. (2022). An economical helping hand for farmers—agricultural drone. In Smart agriculture automation using advanced technologies: Data analytics and machine learning, cloud architecture, automation and IoT (pp. 165-176). Springer. https://doi.org/10.1007/978-981-16-6124-2_10.
Marchesi, C., & Chauhan, B. S. (2019). The efficacy of chemical options to control Echinochloa crus-galli in dry-seeded rice under alternative irrigation management and field layout. Crop Protection, 118, 72-78. https://doi.org/10.1016/j.cropro.2018.12.016.
Mathiassen, S. K., & Kudsk, P. (1999). Effects of simulated dust deposits on herbicide performance. Pesticide Science, 55(3), 277-284.
Moody, K. (1992). Weed management in wet-seeded rice in tropical Asia. In Proceedings of the International Symposium on Biological Control and Integrated Management of Paddy and Aquatic Weeds in Asia (pp. 123–130). Los Baños, Philippines: International Rice Research Institute.
Naylor, R. (1996). Herbicides in Asian rice: Transitions in weed management. Stanford University Press.
Nowrouzieh, S., Rezaei Asl, A., Jokar, M., & Shafipour, A. (2022). Evaluation of UAV sprayer quality in compared to common sprayers‎ in cotton field. Iranian Journal of Cotton Researches, 10(1), 109-132. https://doi.org/10.22092/ijcr.2023.360187.1187. (In Persian).
Nyarko, K. A., & de Datta, S. K. (1991). Significance of weeds in rice farming. In K. A. Nyarko & S. K. de Datta (Eds.), A handbook of weed control in rice (pp. 1–5). Los Baños, Philippines: International Rice Research Institute.
Paul, R. A. I., Arthanari, P. M., Pazhanivelan, S., Kavitha, R., & Djanaguiraman, M. (2023). Drone-based herbicide application for energy saving, higher weed control and economics in direct-seeded rice (Oryza sativa). Indian Journal of Agricultural Sciences, 93(7), 704-709. https://doi.org/10.56093/ijas.v93i7.137859.
Paul, R. A. I., Arthanari, P. M., Peramaiyan, P., Kumar, V., Bagavathiannan, M., & Sabarivasan, R. (2025). UAV-based herbicide application for efficient weed control and resource savings in direct-seeded rice. Crop Protection, 107129. https://doi.org/10.1016/j.cropro.2025.107129.
Paul, R. A. I., Palanisamy, M. A., Peramaiyan, P., Kumar, V., Bagavathiannan, M., Gurjar, B., ... & Ramasamy, K. (2024). Spray volume optimization with UAV-based herbicide application for effective droplet deposition and weed control in direct-seeded rice. Frontiers in Agronomy, 6, 1491842. https://doi.org/10.3389/fagro.2024.1491842.
Qin, K., Keeney, F., & Oliver, M. (2010). Assessment of oil dispersion pesticide formulations using rheology and near infrared centrifugation techniques. Journal of ASTM International, 7(10), 1-11. https://doi.org/10.1520/JAI102884.
Rao, A. N., Johnson, D. E., Sivaprasad, B., Ladha, J. K., & Mortimer, A. M. (2007). Weed management in direct‐seeded rice. Advances in agronomy, 93, 153-255. https://doi.org/10.1016/S0065-2113(06)93004-1.
Rytwo, G., & Tropp, D. (2001). Improved efficiency of a divalent herbicide in the presence of clay, by addition of monovalent organocations. Applied Clay Science, 18(5-6), 327-333. https://doi.org/10.22067/10.1016/S0169-1317(01)00035-7.
Safaeinezhd, M., Ghasemi-Nejad Raeini, M., & Taki, M. (in press). Field and economic evaluation of spraying drones versus boom sprayers for weed and yellow rust control in wheat fields. Journal of Agricultural Machinery. https://doi.org/10.22067/jam.2025.91236.1322. (In Persian).
Safari, M., & Sheikhi Garjan, A. (2020). Comparison between unmanned aerial vehicle and tractor lance sprayer against Dubas bug Ommatissus lybicus (Hemiptera: Tropiduchidae). Iranian Journal of Plant Protection Science, 51(1), 13-26. https://doi.org/10.22059/ijpps.2020.281898.1006894. (In Persian).
Safari, M., Bagheri, N., & Sheikhi Garjan, A. (2023). Technical and economical evaluation of UAV sprayer in comparison with conventional methods to control tomato Helicoverpa amigera. Agricultural Mechanization and Systems Research, 24(85), 91-110. https://doi.org/10.22092/AMSR.2024.364474.1474. (In Persian).
Safari, M., Bagheri, N., Sheikhi Garjan, A., & Zarifneshat, S. (2023). Evaluation and comparison of sprayer drone to control tuta pest in tomato crop. Agricultural Mechanization and Systems Research, 23(84), 1-16. https://doi.org/10.22092/amsr.2023.361037.1435. (In Persian).
Shan, C., Wang, G., Wang, H., Xie, Y., Wang, H., Wang, S., ... & Lan, Y. (2021). Effects of droplet size and spray volume parameters on droplet deposition of wheat herbicide application by using UAV. International Journal of Agricultural and Biological Engineering, 14(1), 74-81. https://doi.org/10.25165/j.ijabe.20211401.6129.
Shan, C., Wu, J., Song, C., Chen, S., Wang, J., Wang, H., ... & Lan, Y. (2022). Control efficacy and deposition characteristics of an unmanned aerial spray system low-volume application on corn fall armyworm Spodoptera frugiperda. Advanced Application Technology for Plant Protection: Sensing, Modelling, Spraying System and Equipment, 16648714, 174. https://doi.org/10.3389/fpls.2022.900939.
Sharifi Kalyani, F., Babaei, S., Zafarsohrabpour, Y., Nosratti, I., Gage, K., & Sadeghpour, A. (2024). Investigating the impacts of airborne dust on herbicide performance on Amaranthus retroflexus. Scientific Reports, 14(1), 3785. https://doi.org/10.1038/s41598-024-54134-5.
Smith Jr, R. J., & Fox, W. T. (1973). Soil water and growth of rice and weeds. Weed Science, 21(1), 61-63. https://doi.org/10.1017/S0043174500031702.
Southwood, T. R. E., & Henderson, P. A. (2000). Ecological methods (3rd ed.). Blackwell Science.
Supriya, C., Murali Arthanari, P., Kumaraperumal, R., & Sivamurugan, A. P. (2021). Optimization of spray fluid for herbicide application for drones in irrigated maize (Zea mays L.). Agricultural Engineering Research, 16(2), 123-130. https://doi.org/10.9734/ijpss/2021/v33i2130665.
Tsolakis, N., Bechtsis, D., Vasileiadis, G., Menexes, I., & Bochtis, D. D. (2022). Sustainability in the digital farming era: A cyber-physical analysis approach for drone applications in agriculture 4.0. In Information and Communication Technologies for Agriculture—Theme IV: Actions (pp. 29-53). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-84156-0_2.
Vu, D. H., Stuerz, S., & Asch, F. (2023). Rice–weed competition in response to nitrogen form under high and low transpirational demand. Journal of Agronomy and Crop Science, 209(1), 27-40. https://doi.org/10.1111/jac.12562.
Wang, G., Lan, Y., Qi, H., Chen, P., Hewitt, A., & Han, Y. (2019). Field evaluation of an unmanned aerial vehicle (UAV) sprayer: Effect of spray volume on deposition and the control of pests and disease in wheat. Pest Management Science, 75(6), 1546–1555. https://doi.org/10.1002/ps.5321.
Yadav, D. B., Singh, N., Duhan, A., Yadav, A., & Punia, S. S. (2018). Penoxsulam + cyhalofop-butyl (premix) evaluation for control of complex weed flora in transplanted rice and its residual effects in rice–wheat cropping system. Indian Journal of Weed Science, 50(4), 333–339. https://doi.org/10.5958/0974-8164.2018.00072.2.
Yaghoubi, B. (2021). Study of the efficacy of Penoxsulam + Cyhalofop-butyl (OD 6%) on paddy rice weed control [Project final report]. Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization. (In Persian).
Yaghoubi, B. and Pourreza, Z. 2023. Effectiveness of pre and post-emergence herbicides for knotgrass (Paspalum distichum) control in paddy rice. Iranian J. of Weed Sci, 6(2), 23-40. https://doi.org/10.22034/ijws.2023.361291.1428. (In Persian).
Yaghoubi, B., Aminpanah, H., & Chauhan, B. S. (2022). Performance of different herbicides on pondweed (Potamogeton nodosus) in rice. Weed Technology, 36(2), 270-275. https://doi.org/10.1017/wet.2022.5.
Yaghoubi, B., Aminpanah, H., & Sharifi, P. (2021). Efficacy of some new herbicides for barnyardgrass controlling (Echinochloa crus-galli (L.) P. Beauv) in different rice genotypes. Journal of Plant Production Research, 28(1), 169-184. https://doi.org/10.22069/jopp.2021.17598.2626.
Yan, M., Xiangliang, R., Yanhua, M., Jianli, S., Deying, M., Zheng, L., Wei, F., Weili, J., Hongyan, H., Dan, W., Zhiguo, W., & Yubin, L. (2016). Review on result of spraying defoliant by unmanned aerial vehicles in cotton field of Xinjiang. China Cotton, 43(12), 16–20. https://doi.org/10.11963/issn.1000-632X.201612004.
Zarifneshat, S., Saeidirad, M. H., Safari, M., Motame AlShariati, H. R., & Naseri, M. (2022). Technical Evaluation of Agriculture Drone Sprayer for Control of Wheat Weeds and Compare with Conventional Methods. Agricultural Mechanization and Systems Research, 23(82), 53-70. https://doi.org/10.22092/amsr.2022.360045.1427. (In Persian).
Zimdahl, R. L. (2018). Fundamentals of Weed Science, 5th ed. Academic Press. https://doi.org/10.1016/B978-0-12-811143-7.00014-7.