c3518cb17d976b8

جداسازی، شناسایی و ارزیابی بیماری‌زایی گونه‌های فوزاریوم مرتبط با علائم پوسیدگی ریشه و طوقه در مزارع کلزا برخی مناطق استان گلستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه بیوتکنولوژی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی، قزوین، ایران

2 مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

3 گروه بیوتکنولوژی کشاورزی، دانشکده کشاورزی، دانشگاه تربیت مدرس تهران، ایران

10.22059/ijpps.2025.400011.1007088

چکیده

کلزا (Brassica napus) یکی از مهم‌ترین دانه‌های روغنی ایران و جهان است که نقش حیاتی در تأمین روغن خوراکی، تولید انرژی و امنیت غذایی ایفاء می‌کند. بیماری­های پوسیدگی طوقه و ریشه که توسط گونه‌های مختلف جنس Fusarium ایجاد می‌شوند، از عوامل محدودکننده تولید این محصول در استان گلستان و سایر مناطق ایران به شمار می‌روند. این عوامل بیمارگر قارچی سبب خسارت‌های اقتصادی و کاهش عملکرد کلزا می‌شوند. در این پژوهش، تعداد ۱۰۳ نمونه گیاه کلزا با علائم پوسیدگی طوقه و ریشه از یازده مزرعه منتخب واقع در شهرستان­های کردکوی، علی­آباد، گرگان و بندر گز از استان گلستان جمع‌آوری شدند و از این تعداد، ۷۹ جدایه متعلق به جنس Fusarium جداسازی شد. آزمون بیماری­زایی نشان دادند که از بین آنها تعداد 59 جدایه بیماری­زا هستند. جدایه‌های بیماری‌زا بر اساس ویژگی‌های ریخت­شناختی و تجزیه و تحلیل‌های مولکولی، شامل استفاده از نشانگر های اختصاصی، توالی‌یابی نواحی ژنومی ITS و TEF1-α، به عنوان سه گونه Fusarium acuminatum، Fusarium proliferatum و Fusarium culmorum شناسایی شدند. بر اساس نتایج به دست آمده، دو گونه‌ Fusarium culmorum و Fusarium proliferatum در نمونه­های جمع­آوری شده، به ترتیب شامل 47 و 42 درصد جدایه‌های شناسایی شده بودند. با توجه به اطلاعات موجود، این مطالعه نخستین گزارش از بیماری‌زایی سه گونه Fusarium culmorum، Fusarium proliferatum و Fusarium acuminatum در مزارع کلزای استان گلستان محسوب می­شود. نتایج به دست آمده در این پژوهش بر اهمیت شناسایی دقیق و مدیریت هدفمند این عوامل بیماری‌زا برای کاهش خسارت‌های اقتصادی و حفظ سلامت محصول کلزا تاکید دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Isolation, Identification, and Pathogenicity Assessment of Fusarium Species Associated with Root and Stem Rot from Rapeseed Fields in Some Regions of Golestan Province

نویسندگان [English]

  • Mohammadreza Rezaei 1
  • Fatemeh Dehghan Nayeri 1
  • Ahmad Abbasi Moghadam 2
  • Hassan Rasouli 3
1 Biotechnology Department, Faculty of Agriculture and Natural Resources, Imam Khomeini International University (IKIU), Qazvin, Iran
2 Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO) Karaj, Iran.
3 Department of Agricultural Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Rapeseed (Brassica napus L.) is a widely cultivated oilseed crop in Iran and worldwide, valued for its role in producing edible oil, supporting energy production, and contributing to food security. Studies have shown that Fusarium species causing crown and root rot diseases are among the major threats to canola production in Golestan Province and other regions of Iran. These fungal pathogens are responsible for reduced canola yield. In this study, 103  contaminated rapeseed samples exhibiting crown and root rot symptoms were collected from canola-growing fields of Golestan Province. Among these samples, 79 Fusarium isolates were obtained, and the pathogenicity of 59 isolates was confirmed using pathogenicity assays. To identify the collected isolates at the species level, we used a combination of morphological characteristics and molecular/bioinformatics analyses using sequencing of the ITS and TEF1-α genes. Accordingly, the identified isolates were Fusarium acuminatum, Fusarium proliferatum, and Fusarium culmorum. Interestingly, Fusarium culmorum and Fusarium proliferatum accounted for 47 and 42% of the identified isolates among the collected samples. For the first time, this study reports the pathogenicity of these three Fusarium isolates collected from the studied regions. The results highlight the importance of accurate identification and the integrated management of pathogenic Fusarium isolates to reduce economic losses and maintain healthy rapeseed production.

کلیدواژه‌ها [English]

  • Canola wilting
  • F. acuminatum
  • F. proliferatum
  • F. culmorum
  • Root and crown rot

Extended Abstract

Introduction

Rapeseed (Brassica napus L.) is one of the most important cultivated oilseed crops worldwide and in Iran, playing a critical role in edible oil production. In addition to its economic roles, this plant enhances soil health by improving soil biochemical features. Studies have shown that fungal pathogens, particularly Fusarium spp, causing crown and root rot, are among the most damaging threats to canola yield. These catastrophic diseases cause considerable yield reductions and economic losses in regions such as Golestan Province, where rapeseed cultivation has been promoted in recent years. Therefore, integrated management of canola fields by accurate identification of pathogenic Fusarium isolates can guarantee the sustainable production of canola in this part of Iran.

 

 

Objectives

     Due to the economic damage of rapeseed root and crown rot disease occurrence in canola fields of Golestan Province, this investigation aims to isolate, identify, and evaluate the pathogenicity of Fusarium species isolated from different parts of this region.

Materials and Methods

     During the 2021 to 2023 growing seasons, a total of 103 rapeseed samples with symptoms of crown and root rot were collected from 11 regions of Golestan Province, Iran. Totally, 79 fungal isolates of the genus Fusarium were isolated and purified. Afterwards, these isolates were assessed for pathogenicity by inoculation of 28-day-old rapeseed (cult. RGS003) seedlings under controlled greenhouse conditions.

Species-level characterization of the isolates was conducted using morphological methods and identifications keys available for specific identification of fungal species coupled with macroscopic characteristics (color and growth rate of the colony on PDA medium) and microscopic features (shape, size, and production mode of microconidia and macroconidia, presence and formation of chlamydospores, and presence of twisted hyphae on PCA medium), as well as molecular/bioinformatics techniques by amplification, sequencing and evolutionary relationship of the ITS and TEF- genes.

 

Results

     The outcomes exhibit that 59 isolates were pathogenic and caused disease symptoms on the rapeseed seedlings. The identified isolates were classified as  F. acuminatum, F. proliferatum, and F. culmorum. The results indicated that F. culmorum and F. proliferatum isolates were considerably prevalent among the collected samples from the studied regions. Accordingly, F. culmorum isolates possessed 47% of all evaluated isolates, while 11% of the identified isolates were F. acuminatum. Additionally, F. proliferatum isolates accounted for 42% of the identified isolates. The morphological/molecular characterization of the studied isolates was aligned with previously reported results, and confirmed our results. 

Additional greenhouse experiments exhibited that the evaluated isolates showed a differential pathogenicity toward rapeseed seedlings by causing moderate to severe disease symptoms in the crown and root tissues of the treated seedlings. The identified isolates also differentially affected root length, fresh root weight, seedling height, and fresh aerial biomass compared to the control group. Although F. acuminatum was less prevalent among the identified isolates, it showed the highest disease severity in canola seedlings. The pathogenicity levels of F. culmorum and F. proliferatum were comparable to each other, yet both were lower than that of F. acuminatum.

Conclusion

      The outcomes demonstrated that the studied isolates differentially affected the growth and development of rapeseed seedlings. This observation may indicate the presence of possible synergistic interactions among Fusarium isolates in the onset of crown and root rot diseases in canola. Further large-scale molecular and field experiments are recommended to identify new pathogenic isolates of this fungal genus that may pose a threat to canola yield and oil production in the studied regions of Golestan province, Iran. Taken together, the integrated management of canola fields by regular monitoring of these fields for identification of novel pathogenic Fusarium isolates might improve the productivity of this crop by applying effective and practical control strategies against fungal pathogens in canola-growing regions.     

Author Contributions

     FDN and AAM conceived the main idea of this research; AAM conducted morphological identification and pathogenicity tests; HR conducted phylogenetic and statistical analyses; MRR conducted the experimental assays, collected samples, and raw data. All authors contributed equally to the writing of the original and subsequent drafts. The authors have approved the current version of the paper and have agreed to publish the final draft in this journal.

Data Availability Statement

All data discussed in this report were included.

Acknowledgements

      The authors specially thank the scientific support of the Seed and Plant Improvement Institute, the Agricultural Research, Education, and Extension Organization of Iran, and the Faculty of Agriculture and Natural Resources, Imam Khomeini International University for providing the necessary support and facilities to conduct this research. The authors also express their sincere gratitude to Dr. Simin Taheri-Ardestani for her kind and scientific support during conducting experimental steps of this study. This paper was extracted from the PhD dissertation of the first author of this study. 

Ethical considerations

    The authors confirmed that data fabrication, falsification, plagiarism, and misconduct did not occur during the preparation and analyses of data reported in this paper.

منابع

شهنوازی، علی. (۱۴۰۰). بررسی کارایی تولید کلزا در ایران. پژوهش‌های کاربردی زراعی، ۳۴ (۲)، ۵۵ ـ ۷۴.
 لرکی، زهرا و فرخ‌نژاد، رضا. (۱۳۹۴). شناسایی گونه‌های Fusarium همراه با علائم پوسیدگی ریشه و طوقه کلزا در استان خوزستان. مجله دنیای میکروب‌ها، ۸ (۲)، ۱۶۸ ـ ۱۷۲.
میر دریکوند، مریم و درویش‌نیا، مصطفی و پاکباز، سمیرا. (۱۴۰۰). معرفی گونه‌های Fusarium همراه با پوسیدگی طوقه و ریشه کلزا در استان لرستان. علوم بیماری‌های گیاهی، ۱۰ (۱)، ۶۴ ـ ۷۵.  
نصر ا‌صفهانی، مهدی.، صنیعی‌راد، آزاده و نصرالهی، نرگس. (۱۳۸۸). شناسایی برخی عوامل بیماری‌زای قارچی ریشه و طوقه گیاه و کلزا در اصفهان. فصلنامه گیاه‌پزشکی، 1 (۲)، 212ـ 227.
نعمتی مندانی‌پور، عذرا.، فرخ‌نژاد، رضا و مهرابی‌کوشکی، مهدی. (۱۴۰۰). شناسایی گونه‌های Fusarium مرتبط با علائم پوسیدگی ریشه کلزا در استان خوزستان. مجله پژوهش‌های کاربردی در حفاظت گیاه، ۱۰ (۱)، ۲۹ ـ ۴۳. 
REFERENCES
Adam, M. A. A., Tabana, Y. M., Musa, K. B., & Sandai, D. A. (2017). Effects of different mycotoxins on humans, cell genome and their involvement in cancer. Oncology Reports, 37(3), 1321-1336. https://doi.org/10.3892/or.2017.5424
Agrios, George N. (2024). Agrios' Plant Pathology. 6th Edition, Academic Press.
Alizadeh, A., Javan-Nikkhah, M., Salehi Jozani, G. R., Fotouhifar, K., Roodbar Shojaei, T., Rahjoo, V., & Taherkhani, K. (2017). AFLP, pathogenicity and mating type analysis of Iranian Fusarium proliferatum isolates recovered from maize, rice, sugarcane and onion. Mycologia iranica, 4(1), 13-28. https://doi.org/10.22043/mi.2017.115180.
Bakan, B., Giraud-Delville, C., Pinson, L., Richard-Molard, D., Fournier, E., & Brygoo, Y. (2002). Identification by PCR of Fusarium culmorum strains producing large and small amounts of deoxynivalenol. Applied and Environmental Microbiology, 68(11), 5472-5479. https://doi.org/10.1128/AEM.68.11.5472-5479.2002
Basallote-Ureba, M. J., Vela-Delgado, M. D., Capote, N., Melero-Vara, J. M., López-Herrera, C. J., Prados-Ligero, A. M., & Talavera-Rubia, M. F. (2016). Control of Fusarium wilt of carnation using organic amendments combined with soil solarization, and report of associated Fusarium species in southern Spain. Crop Protection, 89, 184-192. https://doi.org/10.1016/j.cropro.2016.07.013.
Bishop, C., & Cooper, R. M. (1983). An ultrastructural study of vascular colonization in three vascular wilt diseases I. Colonization of susceptible cultivars. Physiological Plant Pathology, 23(3), 323-343. https://doi.org/10.1016/0048-4059(83)90018-8
Bodah, E. T. (2017). Root rot diseases in plants: A review of common causal agents and management strategies. Agricultural Research & Technology: Open Access Journal, 5, 555661. https://doi.org/ 10.19080/ARTOAJ.2017.04.555661
Calman, A. I. (1992). Canola seedling blight in Alberta: Pathogens, involvement of Pythium spp. and biological control of Rhizoctonia solani (Master’s thesis, University of Alberta, Edmonton, Canada). https://doi.org/ 10.7939/R3K64B166.
Chen, Y., Zhou, Q., Strelkov, S. E., & Hwang, S.-F. (2014). Genetic diversity and aggressiveness of Fusarium spp. isolated from canola in Alberta, Canada. Plant Disease, 98(6), 727-738. https://doi.org/ 10.1094/PDIS-01-13-0061-RE.
Cuzick, A. M., Maguire, K., & Hammond-Kosack, K. (2009). Lack of the plant signalling component SGT1b enhances disease resistance to Fusarium culmorum in Arabidopsis buds and flowers. New Phytologist, 181(4), 901–912. https://doi.org/ 10.1111/j.1469-8137.2008.02712.x
de Chaves, M. A., Reginatto, P., da Costa, B. S., de Paschoal, R. I., Teixeira, M. L., & Fuentefria, A. M. (2022). Fungicide resistance in Fusarium graminearum species complex. Current Microbiology, 79(2), 62. https://doi.org/10.1007/s00284-021-02759-4
Djalali Farahani-Kofoet, R., Witzel, K., Graefe, J., Grosch, R., & Zrenner, R. (2020). Species-specific impact of Fusarium infection on the root and shoot characteristics of asparagus. Pathogens, 9(6), 509. https://doi.org/ 10.3390/pathogens9060509.
Döll, S., & Dänicke, S. (2011). The Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) in animal feeding. Preventive veterinary medicine, 102(2), 132-145. https://doi.org/10.1016/j.prevetmed.2011.04.008
Durant, A., Pinton, P., Puel, O., & Oswald, I. P. (2025). Mycotoxins in oilseeds and vegetable edible oils: an overview of toxicity, occurrence and exposure. OCL, 32, 19. https://doi.org/10.1051/ocl/2025014
Ekwomadu, T. I., S. A. Akinola and M. Mwanza (2021). Fusarium mycotoxins, their metabolites (free, emerging, and masked), food safety concerns, and health impacts. International Journal of Environmental Research and Public Health 18(22): 11741. https://doi.org/ 10.3390/ijerph182211741.
Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4), 783–791. https://doi.org/ 10.1111/j.1558-5646.1985.tb00420.x
Ferrigo, D., Raiola, A., & Causin, R. (2016). Fusarium toxins in cereals: Occurrence, legislation, factors promoting the appearance and their management. Molecules, 21(5), 627. https://doi.org/10.3390/molecules21050627
Gelderblom, W. C. A., Kriek, N. P. J., Marasas, W. F. O., & Thiel, P. G. (1991). Toxicity and carcinogenicity of the Fusarium moniliforme metabolite, fumonisin B1, in rats. Carcinogenesis, 12(7), 1247–1251. https://doi.org/ 10.1093/carcin/12.7.1247.
Greeff-Laubscher, M. R., Beukes, I., Marais, G. J., & Jacobs, K. (2020). Mycotoxin production by three different toxigenic fungi genera on formulated abalone feed and the effect of an aquatic environment on fumonisins. Mycology, 11(2), 105–117. https://doi.org/ 10.1080/21501203.2019.1604575.
Ha, M. S., Ryu, H., Ju, H. J., & Choi, H.-W. (2023). Diversity and pathogenic characteristics of the Fusarium species isolated from minor legumes in Korea. Scientific Reports, 13(1), 22516. https://doi.org/ 10.1038/s41598-023-49736-4.
Huisman, O. C. (1982). Interrelations of root growth dynamics to epidemiology of root-invading fungi. Annual Review of Phytopathology, 20, 303–327. https://doi.org/10.1146/annurev.py.20.090182.001511.
Jangir, P., Mehra, N., Sharma, K., Singh, N., Rani, M., & Kapoor, R. (2021). Secreted in xylem genes: Drivers of host adaptation in Fusarium oxysporum. Frontiers in Plant Science, 12, 628611. https://doi.org/ 10.3389/fpls.2021.628611.
Kachuei, R., Mohammad Hossein, Y., Sasan, R., Abdolamir, A., Naser, S., Farideh, Z., & Fatemeh, K. Y. (2009). Investigation of stored wheat mycoflora, reporting the Fusarium cf. langsethiae in three provinces of Iran during 2007. Annals of Microbiology, 59, 383–390.  https://doi.org/10.1007/BF03178344
Koch, E., Song, K., Osborn, T. C., & Williams, P. H. (1991). Relationship between pathogenicity and phylogeny based on restriction fragment length polymorphism in Leptosphaeria maculans. Molecular Plant-Microbe Interactions, 4(5), 341–349. https://doi.org/10.1094/MPMI-4-341
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/ 10.1093/molbev/msy096.
Larki, Z., & Farrokhinejad, R. (2015). Identification of Fusarium species associated with root and collar rot of canola in Khuzestan province [In Persian]. Journal of Microbial World, 8(2), 168–172.
Lee, S. B., & Taylor, J. W. (1990). Isolation of DNA from fungal mycelia and single spores. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 282–287). Academic Press. https://doi.org/10.1016/b978-0-12-372180-8.50038-x.
Lemmens, M., Steiner, B., Sulyok, M., Nicholson, P., Mesterházy, Á., & Buerstmayr, H. (2016). Masked mycotoxins: Does breeding for enhanced Fusarium head blight resistance result in more deoxynivalenol-3-glucoside in new wheat varieties? World Mycotoxin Journal, 9(5), 741–754. https://doi.org/ 10.3920/WMJ2015.2029.
Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. John Wiley & Sons. https://doi.org/10.1002/9780470278376.
Li, M., Murray, G. M., & Ash, G. J. (2007). New root diseases of canola in Australia. Australasian Plant Disease Notes, 2, 93–94. https://doi.org/ 10.1071/DN07038.
Li, Y., Ali, U., Cao, Z., Zeng, C., Xiao, M., Wei, F., Yao, X., Guo, L., & Lu, S. (2022). Fatty acid exporter 1 enhances seed oil content in Brassica napus. Molecular Breeding, 42(12), 75. https://doi.org/ 10.1007/s11032-022-01346-0.
Mahato, D. K., Devi, S., Pandhi, S., Sharma, B., Maurya, K. K., Mishra, S., Dhawan, K., Selvakumar, R., Kamle, M., & Mishra, A. K. (2021). Occurrence, impact on agriculture, human health, and management strategies of zearalenone in food and feed: A review. Toxins, 13(2), 92. https://doi.org/ 10.3390/toxins13020092.
Mankeviciene, A., Suproniene, S., Brazauskiene, I., & Gruzdeviene, E. (2011). Natural occurrence of Fusarium mycotoxins in oil crop seed. Plant Breeding and Seed Science, 63, 109-116. 10.2478/v10129-011-0022-1
McCormick, S. P., Stanley, A. M., Stover, N. A., & Alexander, N. J. (2011). Trichothecenes: from simple to complex mycotoxins. Toxins, 3(7), 802-814. https://doi.org/10.3390/toxins3070802
McCreight, J. D., Matheron, M. E., Tickes, B. R., & Platts, B. (2005). Fusarium wilt race 1 on lettuce. HortScience, 40(3), 529–531. https://doi.org/ 10.21273/HORTSCI.40.3.529.
Mirderikvand, M., Darvishnia, M., Bazgir, E., & Pakbaz, S. (2021). Introduction of Fusarium species associated with crown and root of canola in Lorestan Province [In Persian]. Plant Pathology Science, 10(1), 64–75. https://doi.org/ 10.2982/PPS.10.1.64.
Morauf, C., & Steinkellner, S. (2015). Fusarium oxysporum f. sp. lycopersici and compost affect tomato root morphology. European Journal of Plant Pathology, 143(2), 385–398. https://doi.org/ 10.1007/s10658-015-0691-y
Nada, S., Nikola, T., Bozidar, U., Ilija, D., & Andreja, R. (2022). Prevention and practical strategies to control mycotoxins in the wheat and maize chain. Food Control, 136, 108855. https://doi.org/ 10.1016/j.foodcont.2022.108855.
Naqvi, S. A. H., Farhan, M., Ahmad, M., Kiran, R., Shahbaz, M., Abbas, A., ... & Sathiya Seelan, J. S. (2025). Fungicide resistance in Fusarium species: exploring environmental impacts and sustainable management strategies. Archives of Microbiology, 207(2), 31. https://doi.org/10.1007/s00203-024-04219-6
Nasrisfahani, M., Sanieirad, A., & Nasrollahi, N. (2009). Identification of Fusarium species associated with root rot symptoms of wheat and canola in northern Iran [In Persian]. Journal of Plant Protection Research, 49(2), 103–110.
Nelson, P. E., Toussoun, T. A., & Marasas, W. F. O. (1983). Fusarium species: An illustrated manual for identification. Pennsylvania State University Press.
Nemati Mondani Pour, O., Farokhinejad, R., & Mehrabi-Koushki, M. (2021). Identification of Fusarium species associated with root rot symptoms of the rapeseed in Khuzestan province. [In Persian]. Journal of Applied Research in Plant Protection, 10(1), 29–43. https://doi.org/10.22034/ARPP.2021.12465.
Nicholson, P., Simpson, D. R., Weston, G., Rezanoor, H. N., Lees, A. K., Parry, D. W., & Joyce, D. (1998). Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiological and Molecular Plant Pathology, 53(1), 17–37. https://doi.org/10.1006/pmpp.1998.0170
O’Donnell, K., Kistler, H. C., Cigelnik, E., & Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 2044–2049. https://doi.org/ 10.1073/pnas.95.5.2044
Oldenburg, E., Höppner, F., Ellner, F., & Weinert, J. (2017). Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Mycotoxin research, 33(3), 167-182. https://doi.org/10.1007/s12550-017-0277-y
Okello, P. N., Petrović, K., Kontz, B., Ali, S., Marek, L. F., & Mathew, F. M. (2018). Root rot caused by species of Fusarium on Brassica carinata in South Dakota. Plant Health Progress, 19, 188–192. https://doi.org/ 10.1094/PHP-04-18-0012-RS
Pasquali, M., Beyer, M., Logrieco, A., Audenaert, K., Balmas, V., Basler, R., Boutigny, A.-L., Chrpova, J., Czembor, E., & Gagkaeva, T. (2016). A European database of Fusarium graminearum and F. culmorum trichothecene genotypes. Frontiers in Microbiology, 7, 406. https://doi.org/10.3389/fmicb.2016.00406.
Pavicich, M. A., De Boevre, M., & De Saeger, S. (2025). Hidden mycotoxin risks in the shift toward plant-based diets. Current Opinion in Food Science, 101331. https://doi.org/10.1016/j.cofs.2025.101331
Pastuszak, J., Szczerba, A., Dziurka, M., Hornyák, M., Kopeć, P., Szklarczyk, M., & Płazek, A. (2021). Physiological and Biochemical Response to Fusarium culmorum Infection in Three Durum Wheat Genotypes at Seedling and Full Anthesis Stage. International Journal of Molecular Sciences, 22(14), 7433. https://doi.org/10.3390/ijms22147433.
Pestka, J. J., & Smolinski, A. T. (2005). Deoxynivalenol: toxicology and potential effects on humans. Journal of Toxicology and Environmental Health, Part B, 8(1), 39–69. https://doi.org/10.1080/10937400590889458.
Pikulicka, A., & Barabasz, W. (2024). Threat to human and animal health caused by mycotoxins and masked mycotoxins occurring in food and feed. Medicine, 2(4), 178. https://doi.org/ 10.61927/igmin162.
Qu, Z., Ren, X., Du, Z., Hou, J., Li, Y., Yao, Y., & An, Y. (2024). Fusarium mycotoxins: The major food contaminants. mLife, 3, e12112. https://doi.org/ 10.1002/mlf2.12112.
Rasouli, H., Nayeri, F. D., & Khodarahmi, R. (2022). May phytophenolics alleviate aflatoxins-induced health challenges? A holistic insight on current landscape and future prospects. Frontiers in nutrition, 9, 981984. https://doi.org/10.3389/fnut.2022.981984
Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. https://doi.org/ 10.1093/oxfordjournals.molbev.a040454
Savatin, D. V., Gramegna, G., Modesti, V., & Cervone, F. (2014). Wounding in the plant tissue: The defense of a dangerous passage. Frontiers in Plant Science, 5, 470. https://doi.org/103389/fpls.2014.00470.
SekhavatiFar, S., Rahemi Karizaki, A., Nakhzari Moghaddam, A., & Mollashahi, M. (2020). Identification of rapeseed limiting factors using performance comparison analysis. Journal of Crops Improvement, 22(1), 13–25. https://doi.org/ 10.22059/jci.2019.280944.2212.
Shahnavazi, A. (2021). Evaluation of rapeseed production efficiency in Iran [In Persian]. Applied Field Crops Research, 34(2), 55–74. https://doi.org/10.22092/aj.2021.127366.1422
Shabeer, S., Tahira, R., & Jamal, A. (2021). Fusarium spp. mycotoxin production, diseases and their management: An overview. Pakistan Journal of Agricultural Research, 34(2), 278. https://dx.doi.org/10.17582/journal.pjar/2021/34.2.278.293
Starzycki, M.; Starzycka, E.; Pszczola, J.; Solecka, D.(2007) Evaluation of Chosen Winter Rapeseed Genotypes Resistance to Fusarium spp. Using in Vitro Methods. Proceedings of the 12th International Rapeseed Congress, pp. 165–166. Wuhan, China, 26–30 March 2007; Science Press USA Inc
Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences, 101(30), 11030–11035. https://doi.org/ 10.1073/pnas.0404206101.
Wagacha, J. M., & Muthomi, J. W. (2008). Fusarium culmorum: Infection process, mechanisms of mycotoxin production and their role in pathogenesis in wheat. Crop Protection, 27(3-5), 572–577. https://doi.org/ 10.1016/j.cropro.2006.09.003.
Wang, Q. & S. Gottwald (2017). "Wheat root-dip inoculation with Fusarium graminearum and assessment of root rot disease severity. Bio-protocol 7(6): e2189-e2189. https://doi.org/10.21769/BioProtoc.2189
Wang, L., Yang, J., Jia, R., Chen, Z., Wang, N., Wu, J., Chen, F., Zhang, Y., & Lin, K. (2024). Infection process of Alfalfa root rot caused by Fusarium acuminatum. Agronomy, 14(9), 2157. https://doi.org/ 10.3390/agronomy14092157.
White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). Academic Press.
Wu, Felicia. Measuring the economic impacts of Fusarium toxins in animal feeds. Animal Feed Science and Technology 137.3-4 (2007): 363-374. https://doi.org/10.1016/j.anifeedsci.2007.06.010
Wu, L., Hwang, S. F., Strelkov, S. E., Fredua-Agyeman, R., Oh, S. H., Bélanger, R. R., ... & Kim, Y. M. (2024). Pathogenicity, host resistance, and genetic diversity of Fusarium species under controlled conditions from soybean in Canada. Journal of Fungi, 10(5), 303. https://doi.org/10.3390/jof10050303
Xu, Q., J. Wang, D. Wang, X. Lv, L. Fu, P. He, D. Mei, H. Chen & F. Wei (2025). Comprehensive physicochemical indicators analysis and quality evaluation model construction for the post-harvest ripening rapeseeds. Food Chemistry 463: 141331. https://doi.org/10.1016/j.foodchem.2024.141331.
Yan L. (2020). First report of vascular wilt caused by Fusarium proliferatum on cauliflower in China. Plant Disease, 104(11), 3065. https://doi.org/10.1094/PDIS-05-20-0995-PDN.
Yazar, S. & G. Z. Omurtag (2008). Fumonisins, trichothecenes and zearalenone in cereals. International Journal of Molecular Sciences 9(11): 2062-2090. https://doi.org/ 10.3390/ijms9112062.
Yu, H., Chang, K. F., Hwang, S. F., & Strelkov, S. E. (2023). Characterization of the virulence and yield impact of Fusarium species on canola (Brassica napus). Plants, 12(17), 3020. https://doi.org/10.3390/ijms25116244
Yu, H., K.-F. Chang, R. Fredua-Agyeman, S.-F. Hwang & S. E. Strelkov (2024). Diversity and Pathogenicity of Fusarium Root Rot Fungi from Canola (Brassica napus) in Alberta, Canada. International Journal of Molecular Sciences 25(11): 6244. https://doi.org/ 10.3390/ijms25116244.
Yu H., Hwang S.-F. &  Strelkov S.E. (2024). The host range of Fusarium proliferatum in Western Canada. Pathogens, 13(5), 407. https://doi.org/ 10.3390/pathogens13050407.
Zheng, Q. & K. Liu (2022). Worldwide rapeseed (Brassica napus L.) research: A bibliometric analysis during 2011–2021. Oil Crop Science 7(4): 157-165. https://doi.org/ 10.1016/j.ocsci.2022.11.004.
Zhou, Q., Chen, Y., Yang, Y., Ahmed, H. U., Hwang, S.-F., & Strelkov, S. E. (2014). Effect of inoculum density and quantitative PCR-based detection of Rhizoctonia solani AG-2-1 and Fusarium avenaceum on canola. Crop Protection 59: 71-77. https://doi.org/ 10.1016/j.cropro.2014.01.015.