c3518cb17d976b8

کارایی تولید انبوه قارچ‌های بیمارگر حشرات Beauveria bassiana،Metarhizium anisopliae،Purpureocillium lilacinum و Lecanicillium lecanii روی چند بستر طبیعی جامد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاهپزشکی دانشکده کشاورزی دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران

2 عضو هیات علمی دانشکده کشاورزی دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران

3 بخش حمایت و حفاظت، موسسه تحقیقات جنگل ها و مراتع کشور، تهران

4 موسسه تحقیقات گیاهپزشکی کشور، تهران

5 گروه گیاه‌پزشکی دانشکده کشاورزی دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران

10.22059/ijpps.2025.402251.1007093

چکیده

کنترل زیستی با استفاده از قارچ‌های بیمارگر حشرات جایگزینی امیدبخش برای آفت‌کش‌های شیمیایی است. کارایی آفت‌کش‌های زیستی قارچی به بهینه‌سازی تولید انبوه کنیدیوم‌ها و حفظ زنده‌مانی آن‌ها در دوره نگهداری بستگی دارد. در این مطالعه، میزان تولید کنیدیوم‌ها و درصد تندش چهار گونه قارچ بیمارگر حشرات شامل Beauveria bassiana B2، Metarhizium anisopliae M1،  Purpureocillium lilacinum Ento1و Lecanicillium lecanii V198499 روی پنج بستر جامد پوسته برنج، گندم، سبوس گندم، ذرت خرد شده و جو پرک شده ارزیابی شد. جدایه‌های قارچی ابتدا در محیط مایع عصاره سیب‌زمینی کشت داده شدند. بسترهای جامد استریل و مایه‌زنی شده و در دمای 25 درجه سلسیوس انکوبه شدند. پس از برداشت کنیدیوم‌ها، درصد تندش آنها‌ تا 8 هفته (56 روز) ارزیابی شد. طبق نتایج حاصله، بستر جو پرک شده برای قارچ‌های B. bassiana،L. lecanii  و  P. lilacinum به ترتیب  با 109× 3/5، 109× 6/3 و 109×8/2 کنیدیوم در هر گرم بیشترین تولید کنیدیوم‌ها را داشت. M. anisopliae  بهترین عملکرد را روی بستر گندم (109× 6/4 کنیدیوم در هر گرم) داشت. در بین همه جدایه‌ها، جو پرک شده بالاترین درصد تندش (98 درصد در ابتدا و 60 درصد پس از 56 روز) را حفظ کرد. از نظر اقتصادی، شاخص هزینه بستر به ازای تولید 109 کنیدیوم نشان داد که بستر جو پرک‌شده در هر چهار جدایه مورد بررسی، کم‌هزینه‌ترین بستر کشت بود. در مقابل، بستر سبوس گندم در همه جدایه‌ها، هزینه بیشتر و عملکرد زیستی پایین‌تری داشت. جو پرک‌شده به ‌عنوان بستر بهینه برای تولید انبوه قارچ‌های بیمارگر مورد بررسی پیشنهاد می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Mass production efficiency of the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, Purpureocillium lilacinum, and Lecanicillium lecanii on some solid natural substrates

نویسندگان [English]

  • Marzieh Alinejad 1
  • Reza Talaei-Hassanloui 2
  • Seyedeh Masoomeh Zamani 3
  • Hassan Askary 4
  • Jamasb Nozari 5
1 Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2 Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 Research Institute of Forests and Rangelands, Tehran, Iran
4 Iranian Research Institute of Plant Protection, Tehran, Iran
5 Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

Biological control using entomopathogenic fungi is a promising alternative to chemical pesticides. The effectiveness of fungal biopesticides depends on optimizing large-scale conidial production and maintaining viability during storage. This study evaluated the conidial production and germination percentage of Beauveria bassiana B2, Metarhizium anisopliae M1, Purpureocillium lilacinum Ento1, and Lecanicillium lecanii V198499 on five solid substrates: rice husk, wheat, wheat bran, broken corn, and flaked barley. Isolates were first cultured in potato extract liquid medium at 25 °C for 10 days on a shaker to obtain inoculum. Each 200 g substrate was sterilized, moistened with 100 ml of sterile water, and inoculated with 10 ml of fungal suspension. The substrates were incubated at 25 °C for 14 days, with mixing every 48 hours to enhance sporulation. After air-drying, conidia were harvested, and the yield was measured using a hemocytometer. Germination was assessed weekly for 56 days. Flaked barley yielded the highest production for B. bassiana, L. lecanii, and P. lilacinum, with 5.3 × 10⁹, 3.6 × 10⁹, and 2.8 × 10⁹ conidia/g, respectively. M. anisopliae performed best on wheat (4.6 × 10⁹ conidia/g), with flaked barley second. Flaked barley also showed the highest germination (98% initially, 60% after 56 days), while rice husk and wheat bran had the lowest germination (< 50%). From an economic perspective, the conidia-based cost index revealed flaked barley as the most economically viable substrate across all four isolates. In contrast, wheat bran exhibited the highest cost and lowest biological performance. Flaked barley is therefore recommended as the optimal solid substrate for large-scale production of the tested entomopathogenic fungi.

کلیدواژه‌ها [English]

  • Cucumber powdery mildew
  • Microbial formulations
  • Phenolic compounds
  • Defense mechanism

Extended Abstract

Introduction

 Entomopathogenic fungi are important biological control agents that offer a promising alternative to synthetic chemical pesticides. Their effectiveness depends on producing large quantities of viable conidia and maintaining their quality during storage. Solid-state fermentation (SSF) using agricultural products is a common method for large-scale conidial production. However, the type of substrate plays a major role in conidial yield, germination rate, and production cost. The present study aimed to evaluate the biological performance and economic efficiency of five solid substrates (rice husk, wheat, wheat bran, broken corn, and flaked barley) in the production of conidia for four fungal isolates: Beauveria bassiana B2, Metarhizium anisopliae M1, Purpureocillium lilacinum Ento1, and Lecanicillium lecanii V198499.

 

 Materials and Methods

The experiment was conducted under laboratory conditions at 25 °C. Four entomopathogenic fungal isolates were cultured in potato extract liquid medium on a shaker (150 rpm) for 10 days to prepare the inoculum. Five solid substrates were used, including rice husk, wheat, wheat bran, broken corn, and flaked barley. Each substrate (200 g) was autoclaved, moistened with 100 ml of sterile water, and inoculated with 10 ml of the fungal suspension. The inoculated substrates were incubated at 25 °C for 14 days and manually mixed every 48 hours to improve sporulation. After incubation, substrates were air-dried, and conidia were harvested by mixing 1 g of dry substrate with 9 ml of water-Tween 80 solution (0.01%). Conidial concentrations were determined using a hemocytometer. The germination percentage was assessed weekly for 8 weeks by plating samples on PDA medium and counting germinated conidia under a microscope. The cost of each substrate per 100 g was recorded to assess economic performance. Then, a cost index was calculated based on the average number of conidia produced per gram of substrate. This index, expressed in Tomans per 109 conidia, allowed direct comparison of cost efficiency among substrates.

 

Results and Discussion

Results showed that conidial production varied among fungal isolates and substrates. B. bassiana B2 yielded the highest number of conidia on flaked barley (5.3 × 10⁹ conidia/g), followed by rice husk (3.5 × 10⁹ conidia/g), while the lowest production was recorded on wheat (1.2 × 10⁹ conidia/g). In contrast, M. anisopliae M1 had the highest yield on wheat (4.6 × 10⁹ conidia/g), with flaked barley ranking second (3.1 × 10⁹ conidia/g) and wheat bran yielding the lowest (6.0 × 10⁸ conidia/g). L. lecanii V198499 produced the highest conidia on flaked barley (3.6 × 10⁹ conidia/g) and the lowest on wheat bran (4.6 × 10⁸ conidia/g). In P. lilacinum Ento1, flaked barley yielded 2.8 × 10⁹ conidia/g, while the lowest production was observed on rice husk (1.5 × 10⁸ conidia/g). These findings highlight the significant influence of substrate type on sporulation, indicating that both nutrient composition and structural properties of the substrates strongly affect fungal growth and conidiation efficiency. Conidial germination rates were also affected by substrate and incubation time. Flaked barley supported the highest initial germination (98%) across all isolates and retained 60% after 56 days for B. bassiana. Wheat (97% to 55%) and rice husk (95% to 44%) followed. In contrast, wheat bran and rice husk caused sharp declines in L. lecanii germination, dropping to 40% and 38% after eight weeks. P. lilacinum retained 62% germination on flaked barley but only 44% on rice husk and 46% on wheat bran. These results demonstrate that substrate properties such as aeration, porosity, and moisture retention have a crucial role in sustaining conidial viability during storage. Economic analysis showed that the cost per gram of substrate varied significantly among substrates. Flaked barley was the most economical option across all tested isolates—B. bassiana B2, M. anisopliae M1, P. lilacinum Ento1, and L. lecanii V198499—with costs of 0.015–0.034 USD g⁻¹ of substrate. In contrast, wheat bran consistently incurred the highest costs and yielded the lowest biological performance among all substrates. Overall, flaked barley provided the best balance between biological efficiency and cost-effectiveness, supporting its suitability as a sustainable substrate for large-scale production of entomopathogenic fungi.

 

Conclusion

Overall, the results showed that substrate type significantly influenced conidial yield, germination rate, and production cost of entomopathogenic fungi. Flaked barley resulted in the highest conidial production and germination rate in B. bassiana, P. lilacinum, and L. lecanii, while M. anisopliae performed best on wheat. Economically, flaked barley had the lowest cost per 10⁹ conidia across all isolates. In contrast, wheat bran showed the lowest biological performance and cost in all cases. Therefore, flaked barley is recommended as the most suitable substrate for large-scale production of the tested fungi.

 

 

Author Contributions

Marzieh Alinejad: investigation, methodology, formal analysis, visualization, draft preparation; Reza Talaei-Hassanloui: methodology, formal analysis, supervision, project administration and funding acquisition, final review and edit; Seyede Masoomeh Zamani: methodology, supervision, final review and edit; Hassan Askary: final review and edit; Jamasb Nozari: final review and edit.

REFERENCES

Agale, S. V., Gopalakrishnan, S., Ambhure, K. G., Chandravanshi, H., Gupta, R., & Wani, S. P. (2018). Mass Production of Entomopathogenic Fungi (Metarhizium anisopliae) using Different Grains as a Substrate. International Journal of Current Microbiology and Applied Sciences, 7(1), 2227–2232. https://doi.org/10.20546/ijcmas.2018.701.268
Barra, P., Barros, G., Etcheverry, M., & Nesci, A. (2018). Mass production studies in solid substrates with the entomopathogenic fungus Purpureocillium lilacinum. International Journal of Advance Agricultural Research, 6, 78–84.
Barranco-Florido, J. E., Alatorre-Rosas, R., Gutiérrez-Rojas, M., Viniegra-González, G., & Saucedo-Castañeda, G. (2002). Criteria for the selection of strains of entomopathogenic fungi Verticillium lecanii for solid state cultivation. Enzyme and Microbial Technology, 30(7), 910–915. https://doi.org/10.1016/S0141-0229(02)00032-7
Bena-Molaei, P. , Talaei-Hassanloui, R. , Askary, H. and Kharazi-Pakdel, A. (2011). Study on potential of some solid natural substances in production of Beauveria bassiana (Ascomycota, Cordycipitaceae) conidia. Journal of Entomological Society of Iran, 30(2), 1-15.
Bigham, Z., & Talaei-Hassanlouei, R. (2017). Production of two entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae on natural substrates using a diphasic production method. Biological Control of Pests and Plant Diseases, 6(1), 103–109. https://doi.org/10.22059/jbioc.2017.202734.137
Butt, T. M., Jackson, C., & Magan, N. (2001). Introduction. In T. M. Butt, C. Jackson, & N. Magan (Eds.), Fungi as Biocontrol Agents: Progress, Problems and Potential (pp. 1–8). CAB International. http://dx.doi.org/10.1079/9780851993560.0000
Chavan, S., Chinnaswamy, K. P., & Changalarayappa. (1998). Silkworm pupal powder as ingredient of culture media of Beauveria bassiana (Bals.) Vuill. Insect Environment, 4(1), 21.
Chen, C., Wang, Z., Ye, S., & Feng, M. (2010). Synchronous production of conidial powder of several fungal biocontrol agents in series fermentation chamber system. African Journal of Biotechnology8(15). https://doi.org/10.4314/ajb.v8i15.61867
Chen, W., Xie, W., Cai, W., Thaochan, N., & Hu, Q. (2021). Entomopathogenic fungi biodiversity in the soil of three provinces located in Southwest China and first approach to evaluate their biocontrol potential. Journal of Fungi, 7(11), 984. https://doi.org/10.3390/jof7110984
da Cunha, L. P., Casciatori, F. P., Vicente, I. V., Garcia, R. L., & Thoméo, J. C. (2020). Metarhizium anisopliae conidia production in packed-bed bioreactor using rice as substrate in successive cultivations. Process Biochemistry, 97, 104–111. https://doi.org/10.1016/j.procbio.2020.07.002
Derakhshan, A., Rabindra, R. J., Ramanujam, B., & Rahimi, M. (2008). Evaluation of different media and methods of cultivation on the production and viability of entomopathogenic fungi, Verticillium lecanii (Zimm.) Viegas. Pakistan Journal of Biological Sciences, 11(11), 1506–1509. https://doi.org/10.3923/pjbs.2008.1506.1509
Feng, M. G., Poprawski, T. J., & Khachatourians, G. G. (1994). Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: current status. Biocontrol Science and Technology4(1), 3–34. https://doi.org/10.1080/09583159409355309
Feng, M.-G., Pu, X.-Y., Ying, S.-H., & Wang, Y.-G. (2004). Field trials of an oil-based emulsifiable formulation of Beauveria bassiana conidia and low application rates of imidacloprid for control of false-eye leafhopper Empoasca vitis on tea in southern China. Crop Protection, 23(6), 489–496. https://doi.org/10.1016/j.cropro.2003.10.004
Hallsworth, J. E., & Magan, N. (1999). Water and temperature relations of growth of the entomogenous fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus. Journal of Invertebrate Pathology, 74(3), 261–266. https://doi.org/10.1006/jipa.1999.4883
Jackson, M. A., & Jaronski, S. T. (2009). Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Mycological Research, 113(8), 842–850. https://doi.org/10.1016/j.mycres.2009.03.004
Jaronski, S. T., & Jackson, M. A. (2012). Mass production of entomopathogenic Hypocreales. In L. A. Lacey (Ed.), Manual of techniques in invertebrate pathology (2nd ed., pp. 255–284). Academic Press. https://doi.org/10.1016/B978-0-12-386899-2.00008-7
Kankale, M. D., Keliwatkar, N. M., Das, S. B., & Sontakke, B. K. (2017). Selection of suitable and economic substrate for mass production of fungus, Beauveria bassiana. Journal of Applied Zoological Research, 28(2), 157–163.
Karanja, L. W., Phiri, N. A., & Oduor, G. I. (2010). Effect of different solid substrates on mass production of Beauveria bassiana and Metarhizium anisopliae entomopathogens. In Proceedings of the 12th KARI Biennial Science Conference, Nairobi, Kenya, 8–12 November 2010, 789–797.
Lomer, C. J., Bateman, R. P., Johnson, D. L., Langewald, J., & Thomas, M. (2001). Biological control of locusts and grasshoppers. Annual Review of Entomology, 46, 667–702. https://doi.org/10.1146/annurev.ento.46.1.667
Maina, U. M., Galadima, I. B., Gambo, F. M., & Zakaria, D. (2018). A review on the use of entomopathogenic fungi in the management of insect pests of field crops. Journal of Entomology and Zoology Studies, 6(1), 27–32.
Mascarin, G. M., & Jaronski, S. T. (2016). The production and uses of Beauveria bassiana as a microbial insecticide. World Journal of Microbiology and Biotechnology, 32(11), 177. https://doi.org/10.1007/s11274-016-2131-3
Mascarin, G. M., Golo, P. S., de Souza Ribeiro-Silva, C., & others. (2024). Advances in submerged liquid fermentation and formulation of entomopathogenic fungi. Applied Microbiology and Biotechnology, 108, 451. https://doi.org/10.1007/s00253-024-13287-z
Medina, H. R., & Rangel, D. E. N. (2025). Light enhances the production of conidia and influences their hydrophobicity in Tolypocladium inflatum. Fungal Biology, 129(1), 101483. https://doi.org/10.1016/j.funbio.2024.07.005
Muñiz-Paredes, F., Miranda-Hernández, F., & Loera, O. (2017). Production of conidia by entomopathogenic fungi: From inoculants to final quality tests. World Journal of Microbiology and Biotechnology, 33, 57. https://doi.org/10.1007/s11274-017-2229-2
Nguyen Thi, H., Nguyen, Q. N., Dang Thi, N. Q., & others. (2023). Mass production of entomopathogenic fungi Purpureocillium lilacinum PL1 as a biopesticide for the management of Amrasca devastans (Hemiptera: Cicadellidae) in okra plantation. Egyptian Journal of Biological Pest Control, 33, 85. https://doi.org/10.1186/s41938-023-00730-y
Ovruski, S., Schliserman, P., & Aluja, M. (2003). Native and introduced host plants of Anastrepha fraterculus and Ceratitis capitata (Diptera: Tephritidae) in northwestern Argentina. Journal of Economic Entomology, 96(4), 1108–1118. https://doi.org/10.1093/jee/96.4.1108
Pham, T. A., Kim, J. J., & Kim, K. (2010). Optimization of Solid-State Fermentation for Improved Conidia Production of Beauveria bassiana as a Mycoinsecticide. Mycobiology38(2), 137–143.   https://doi.org/10.4489/MYCO.2010.38.2.137
Rangel, D. E. N., Alston, D. G., & Roberts, D. W. (2008). Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus. Mycological Research, 112(11), 1355–1361. https://doi.org/10.1016/j.mycres.2008.04.011
Rangel, D. E. N., Anderson, A. J., & Roberts, D. W. (2008). Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Mycological Research, 112(11), 1362–1372. https://doi.org/10.1016/j.mycres.2008.04.013
Rashid, M., Talaei-Hassanloui, R., Khodaiyan, F., & Goettel, M. (2019). Potential use of some liquid natural media for the production of blastospores of entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Iranian Journal of Biosystem Engineering, 50(2), 489–497.
Roshandel, S., Askary, H., Talaei-Hassanloui, R., & Allahyari, H. (2016). The effects of natural substrates on the sporulation and viability of conidia and blastospores of Metarhizium anisopliae. BioControl in Plant Protection, 4(1), 94–104.
Roswanjaya, Y. P., Saryanah, N. A., & Devy, . L. (2022). Conidia Production of Beauveria Bassiana in Solid Substrate Fermentation Using a Biphasic System. KnE Life Sciences7(3), 648–663. https://doi.org/10.18502/kls.v7i3.11169
RStudio Team. (2020). RStudio: Integrated development environment for R. RStudio, PBC. https://www.rstudio.com/
Sabbahi, R., Hock, V., Azzaoui, K., Saoiabi, S., & Hammouti, B. (2022). A global perspective of entomopathogens as microbial biocontrol agents of insect pests. Journal of Agriculture and Food Research, 10, 100376. https://doi.org/10.1016/j.jafr.2022.100376
Sala, A., Artola, A., Barrena, R., & Sánchez, A. (2024). Harnessing packed-bed bioreactors’ potential in solid-state fermentation: The case of Beauveria bassiana conidia production. Fermentation, 10(9), 481. https://doi.org/10.3390/fermentation10090481
Sala, A., Barrena, R., Artola, A., & Sánchez, A. (2019). Current developments in the production of fungal biological control agents by solid-state fermentation using organic solid waste. Critical Reviews in Environmental Science and Technology49(8), 655–694. https://doi.org/10.1080/10643389.2018.1557497
Sala, A., Vittone, S., Barrena, R., Sánchez, A., & Artola, A. (2021). Scanning agro-industrial wastes as substrates for fungal biopesticide production: Use of Beauveria bassiana and Trichoderma harzianum in solid-state fermentation. Journal of Environmental Management, 295, 113113. https://doi.org/10.1016/j.jenvman.2021.113113
Santa, H. S. D., Santa, O. R. D., Brand, D., Vandenberghe, L. P. S., & Soccol, C. R. (2005). Spore production of Beauveria bassiana from agro-industrial residues. Brazilian Archives of Biology and Technology, 48(Spe), 51–60. https://doi.org/10.1590/S1516-89132005000400007
Santos, P. de S., Abati, K., Mendoza, N. V. R., Mascarin, G. M., & Delalibera Júnior, Í. (2021). Nutritional impact of low-cost substrates on biphasic fermentation for conidia production of the fungal biopesticide Metarhizium anisopliae. Bioresource Technology Reports, 13, 100619. https://doi.org/10.1016/j.biteb.2021.100619
Sayed, S. M., El Husseini, M. M., Agamy, E., & Farag, M. M. A. (2025). Field evaluation of entomopathogenic fungi and Calotropis procera extract for controlling aphids and whiteflies on pepper. Scientific Reports, 15, 24044. https://doi.org/10.1038/s41598-025-06100-y
Shirazi, R. S., Fatemy, S., Naeimi, S., & Taheri, Z. M. (2019). Solid-state fermentation and viability of Pochonia chlamydosporia and Purpureocillium lilacinum on some organic substrates. Biocontrol in Plant Protection, 6(2), 1–14. https://doi.org/10.22092/bcpp.2019.119398
Somasekhar, N., Mehta, U. K., & Hari, K. (1998). Evaluation of sugarcane by-products for mass multiplication of nematode antagonistic fungi. In: Nematology: Challenges and Opportunities in 21st Century. Proceedings of the Third International Symposium of Afro-Asian Society of Nematologists (TISAASN), Sugarcane Breeding Institute (ICAR), Coimbatore, India, 199–202.
St. Leger, R. J., & Wang, C. (2009). Entomopathogenic fungi and the genomic era. In: Stock, S. P., Vandenberg, J., Glazer, I., & Boemare, N. (Eds.), Insect Pathogens: Molecular Approaches and Techniques (pp. 366–400). CABI, Wallingford, UK. https://doi.org/10.1079/9781845934781.0365
St. Leger, R. J., Joshi, L., Bidochka, M. J., & Roberts, D. W. (1996). Construction of an improved mycoinsecticide overexpressing a toxic protease. Proceedings of the National Academy of Sciences of the United States of America, 93(13), 6349–6354. https://doi.org/10.1073/pnas.93.13.6349
Tekam, K. D., Kelwatkar, N. M., & Das, S. B. (2018). Evaluation of economic medium for mass multiplication of entomopathogenic fungus Metarhizium anisopliae. Journal of Pharmacognosy and Phytochemistry, 7(5), 2790–2795.
Wilson, C., & Tisdell, C. (2001). Why farmers continue to use pesticides despite environmental, health, and sustainability costs. Ecological Economics, 39(3), 449–462. https://doi.org/10.1016/S0921-8009(01)00238-5