c3518cb17d976b8

بر‎ ‎هم‌کنش تغذیه‌ای بین گونه‌های مختلف قارچ‌‌های میکوریز و فلفل ‏Capsicum annum L.‎‏ و اثرات ‏آن بر پارامترهای زیستی شتة سبز هلو،Myzus persicae (Sulzer) ‎،‎ ‎در شرایط گلخانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه گیاهپزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه ‏لرستان، ایران

2 دانشیار، گروه گیاهپزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان، ایران

3 دکتری حشره‌شناسی، گروه گیاهپزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان، ایران

چکیده

شتة سبز هلو،Myzus persicae (Sulzer) ، حشره­ای چندخوار می­باشد که در شرایط گلخانه و مزرعه به تعداد زیادی از گیاهان خسارت می‌زند. در این تحقیق، تأثیر پنج تیمار قارچ- ریشهآرباسکولار (AMF)شامل Glomus caledonium، etanicatumG.، G. geosporum، G. intradicese و G. mosseae به همراه شاهد بر میزان فنل کل گیاه فلفل­دلمه­ای و همچنین تأثیر آن‌ها بر پارامترهای زیستی شتة M. persicaeبررسی شد. بر اساس نتایج، بیشترین میزان فنل کل در گیاه آلوده به شته در تیمارهای G. mosseae و G. intradicese (به­ترتیب 1/686 و 3/664 میلی­گرم بر میلی­لیتر) و کم­‌ترین میزان آن در تیمار شاهد (8/410 میلی­گرم بر میلی­لیتر) مشاهده شد. کوتاه­ترین و طولانی­ترین طول عمر شتة سبز هلو به­‌ترتیب در تیمار G. mosseae (00/16 روز) و شاهد (35/22 روز) مشاهده شد. مقدار نرخ خالص تولید مثل (R0)از 54/37 تا 34/53 ماده به ازای هر فرد متغیر بود که کم­ترین و بیشترین مقدار آن به­‌ترتیب در تیمارهای G. mosseaeو شاهد به دست آمد. همچنین، کم­ترین مقدار نرخ ذاتی افزایش جمعیت (r) و نرخ متناهی افزایش جمعیت(λ)شتة سبز هلو در تیمار G. mosseae(به­‌ترتیب 2867/0 و 3320/1 بر روز) ثبت شد. نتایج این بررسی نشان داد که تیمار G. mosseae رشد جمعیت شتة M. persicaeرا به­‌طور معنی­داری کاهش داد. بنابراین، این تیمار می­تواند در گیاه فلفل­دلمه­ای مقاومت القایی را نسبت به این شته ایجاد کند که می­تواند در برنامة IPM این آفت مفید واقع شود.

کلیدواژه‌ها


عنوان مقاله [English]

Nutrition interaction between different mycorrhizal species and bell pepper, ‎Capsicum annum L., and its effects on biological parameters of the green peach ‎aphid, Myzus persicae (Sulzer), under greenhouse conditions‎

نویسندگان [English]

  • Mostafa Hassanvand 1
  • Jahanshir Shakarami 2
  • Mozhgan Mardani-Talaee 3
1 M. Sc. Student, Department of Plant Protection, Faculty of ‎Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
2 Associate Professor Department of Plant Protection, Faculty of Agriculture and Natural ‎Resources, Lorestan University, Khorramabad, Iran
3 Former Ph.D. Student of Entomology, Department of Plant Protection, Faculty of Agriculture and Natural Resources, Lorestan ‎University, Khorramabad, Iran
چکیده [English]

The green peach aphid, Myzus persicae (Sulzer), is a polyphagous insect that can cause damage on a lot of crops in the field and greenhouse conditions. In this research, the effect of five treatments of Arbuscular Mycorrhizal Fungi (AMF) including Glomus caledonium, G. etanicatum, G. geosporum, G. intradicese and G. mosseae together with control treatmenton total amount of phenol content in bell pepper and also their impact on biological parameters of M. persicae were investigated. Based on the results, the highest amount of the total phenolic compound in the plant infested with aphid was observed on G. mosseaeandG. intradicese (686.1 and 664.3 mg/mL, respectively) and the lowest amount was on control (410.8 mg/mL).The shortest and longestadult longevity of the green peach aphid were observed on G. mosseae(16.00 days)and control (22.35 days), respectively. The net reproductive rate (R0) varied from 37.54 to 53.34 offspring/individual, with the lowest and highest values obtained on G. mosseae and control, respectively.Also, the lowest intrinsic rate of increase (r) and finite rate of increase (λ) of the aphid were recorded on G. mosseae treatment (0.2867 and 1.3320 day-1, resp.) compared to other treatments. The results of this study showed that G. mosseae treatment significantly reduced the population growth of M. persicae. Therefore, G. mosseae can be used to produce induced resistance in bell pepper to this aphid, which can be useful in the IPM program of this pest.

کلیدواژه‌ها [English]

  • Arbuscular Mycorrhizal Fungi (AMF)
  • induced resistance
  • life table
  • plant-aphid interactions
  1. Agrawal, A. A. & Sherriffs, M. F. (2001). Induced plant resistance and susceptibility to late-season herbivores of wild radish. Annals of the Entomological Society of America, 94, 71-75.
  2. Awmack, C. S. & Leather, S. R. (2002). Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology, 47, 817-844.
  3. Bennett, A. E., Millar, N. S., Gedrovics, E. & Karley, A. J. (2016). Plant and insect microbial symbionts alter the outcome of plant-herbivore-parasitoid interactions: Implications for invaded, agricultural and natural systems. Journal of Ecology, 104, 1734-1744.
  4. Bernards, M. A. & Bastrup-Spohr, L. (2008). Phenylpropanoid metabolism induced by wounding and insect herbivory. In: Schaller, A. (Eds.), Induced plant resistance to herbivory. (pp. 189-213). New York: Springer.
  5. Bethke, J. A., Redak, R. A. & Schuch, U. K. (1998). Melon aphid performance on Chrysanthemum as mediated by cultivar and differential levels of fertilization and irrigation. Entomologia Experimentalis et Applicata, 88, 41-47.
  6. Bolandandam, J., Barker, H. & Fenton, B. (2004). Differences in potato leaf roll transmitting ability of individual genotypes of Scottish Myzus persicae with different susceptibilities to Lambda- cyhalothrin insecticide. In: Proceedings of 15th International Plant Protection Congress, 11-16 May., Beijing, China, 221 pp.
  7. Capinera, J. L. (2001). Green Peach Aphid, Myzus persicae (Sulzer) (Insecta: Hemiptera: Aphididae). Entomology and Nematology Department, Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville.
  8. Chi, H. (1988). Life table analysis incorporating both sexes and variable development rate among individuals. Environmental Entomology, 17, 26-34.
  9. Chi, H. (2018). TWOSEX- MSChart: A Computer Program for the Age-stage, Two sex Life Table Analysis. (http://140.120.197.173/Ecology/Download/TWOSEX–MSChart.Zip) (Accessed 12 June 2018).
  10. Chi, H. & Liu, H. (1985). Two new methods for the study of insect population ecology. Bulletin of the Institute Zoology Academia Sinica, 24, 225-240.
  11. Cordier, C., Pozo, M. J., Barea, J. M., Gianinazzi, S. & Gianinazzi-Pearson, V. (1998). Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Molecular Plant-Microbe Interactions,11, 1017-1028.
  12. Eigenbrode, S. D. & Espelie, K. E. (1995). Effects of plant epicuticular lipids on insect herbivores. Annual Review of Entomology, 40, 171-194.
  13. Facchini, P. J. (2001). Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 29-66.
  14. Ferrero, M., Moraes, G. J., Kreiter, S., Tixier, M. S. & Knapp, M. (2007). Life tables of the predatory Phytoseiulus longipes feeding on Tetranychus evansi at four temperatures (Acari: Phytoseiidae, Tetranychidae). Experimental and Applied Acarology, 41, 45-53.
  15. Fester, T. & Hause, G. (2005). Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza, 15, 373-379.
  16. Fontana, A., Reichelt, M., Hempe, S., Gershenzon, J. & Unsicker, S. B. (2009). The effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of Plantago lanceolata L. Journal of Chemical Ecology, 35, 833-843.
  17. Frantz, D. J., Gardner, J., Hoffmann, P. M. & Jahn, M. M. (2004). Greenhouse screening of Capsicum accessions for resistance to green peach aphid (Myzus persicae). Horticultural Science, 39, 1332-1335.
  18. Gange, A. C .(2006). Insect-mycorrhizal interactions: patterns, processes, and consequences. In: Ohgushi, T., Craig, T. P. & Price, P. W. (Eds.), Indirect interaction webs: nontrophic linkages through induced plant traits. (pp. 124–144). Cambridge University Press, Cambridge.
  19. Gehring, C. & Bennett, A. (2009). Mycorrhizal fungal–plant–insect interactions: The importance of a community approach. Environmental Entomology,38, 93-102.
  20. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology,43, 205-227.
  21. Guerrieri, E., Lingua, G., Digilio, M. C., Massa, N. & Berta, G. (2004). Do interactions between plant roots and the rhizosphere affect parasitoid behaviour? Journal of Economic Entomology, 29, 753-756.
  22. Hagley, E. A. C. & Barber, D. R. (1992). Effect of food sources on the longevity and fecundity of Pholetesor ornigis (Weed) (Hymenoptera: Braconidae). Canadian Entomologist, 124, 341-346.
  23. Harun, M. D. & Chung, Y. R. (2017). Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Frontiers in Plant Science, 8, 1-11.
  24. Haukioja, E., Ossipov, V. & Lempa. K. (2002). The interactive effects of leaf maturation and phenolics on consumption and growth of a geanetrid moth. Entomologia Experimentalis et Applicata, 104, 125-136.
  25. Helms, S. E. & Hunter, M. D. (2005). Variation in plant quality and the population dynamics of herbivores, there is nothing average about aphids. Oecology, 145, 197-204.
  26. Herron, G., Powis, K. & Rophail, J. (2000). Baseline studies and preliminary resistance survey of Australian populations of the cotton aphid, Aphis gossypii Glover (Hom.: Aphidiae). Australian Journal of Entomology, 39, 33–38.
  27. Hoffmann, D., Vierheilig, H., Peneder, S. & Schausberger, P. (2011). Mycorrhiza modulates aboveground tri–trophic interactions to the fitness benefit of its host plant. Ecological Entomology, 36, 574-581.
  28. Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K. & Barea, J. M. (2003). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 37, 116-118.
  29. Keeling, C. I. & Bohlmann, J. (2006). Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defense of conifers against insects and pathogens. New Phytologist, 170, 657-675.
  30. Kogan, M. & Paxton, J. (1983). Natural inducers of plant resistance to insects. In: Hedin, P. A. (Eds.), Plant resistance to insects. (pp. 153–171). American Chemical Society Symposium. American Chemical Society, Washington, DC. Series 208.
  31. Liu, Z., Li, D., Gong, P. Y. & Wu, K. J. (2004). Life table studies of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), on different host plants. Environmental Entomology, 33, 1570-1576.
  32. López-Ráez, J. A., Flors, V., García, J. M. & Pozo, M. J. (2010). AM symbiosis alters phenolic acid content in tomato roots. Plant Signaling and Behavior, 5, 1138-1140.
  33. Mardani-Talaee, M., Nouri-Ganblani, G., Razmjou, J., Hassanpour, M., Naseri, B. & Asgharzadeh, A. (2016). Effects of chemical, organic and bio fertilizers on some secondary metabolites in the leaves of bell pepper (Capsicum annuum) and their impact on life table parameters of Myzus persicae (Hemiptera: Aphididae). Journal of Economic Entomology, 109, 1-10.
  34. Moreira, X., Sampedro, L. & Zas, R. (2010). Defensive responses of methyl of Pinus pinaster seedlings to exogenous application of methyl jasmonate: concentration effect and systemic response. Environmental and Experimental Botany, 67, 94-100.
  35. Ozawa, R. (2000). Involvement of jasmonate– and salicylate– elated signaling pathways for the production of specific herbivore–induced volatiles in plants. Plant and Cell Physiology, 41, 391–398.
  36. Peterson, R. L., Massicottle, H. B. & Melville, L. H. (2004). Mycorrhizas; Anatomy and Cell Biology. CABI Publishing, United Kingdom.
  37. Pieterse, C. M. J., Leon-Reyes, A., Van Der Ent, S. & Van Wees, S. C. M. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology,5, 308-316.
  38. Pozo, M. J. & Azcón-Aguilar, C. (2007). Unraveling mycorrhiza induced resistance. Current Opinion in Plant Biology,10, 393-398.
  39. Pozo, M. J., Cordier, C., Dumas-Gaudot, E., Gianinazzi, S., Barea, J. M. & Azcón–Aguilar, C. (2002). Localized versus systemic effect of arbuscular mycorrhizal fungi on defense responses to Phytophthora infection in tomato plants. Journal of Experimental Botany,53, 525-534.
  40. Pozo, M. J., Jung, S. C., Martínez-Medina, A., López–Ráez, J. A., Azcón-Aguilar, C. & Barea, J. M. (2013). Root allies: Arbuscular mycorrhizal fungi help plants to cope with biotic stresses. In: Aroca, R. (Eds.), Symbiotic endophytes. (pp. 289–307). Berlin, Germany: Springer.
  41. Rudell, D. R. & Fellman, J. (2005). Pre harvest application of methyl jasmonate to ”Funji” apples enhances red coloration and affects fruit size, splitting, and bitter pit incidence. Horticultural Science, 40, 1760-1762.
  42. Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A. & Pozo, M. J. (2012). Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology,38, 651-664.
  43. Samraj, D. A. & David, B. V. (1988). Life table studies on the spotted bollworm, Earias vittella (Fabricious) (Lepidoptera: Noctuidae) in cotton ecosystem. Journal of the Bombay Natural History Society, 85, 637-641.
  44. Sanatombi, K. & Sharma, G. J. (2007). Micropropagation of Capsicum annuum L. using axillary shoot explants. Scientia Horticulturae, 113, 96-99.
  45. Slinkard, K. & Singleton, V. L. (1977). Total phenol analysis; automation and comparison with manual methods. American Journal of Enology and Viticulture, 28, 49-55.
  46. Smith, C. M. (2005). Plant Resistance to Arthropods: Molecular and Conventional Approaches. Dordrecht, the Netherlands: Springer. 423 pp.
  47. Strauss, S. & Agrawal, A. A. (1999). The ecology and evolution of plant tolerance to herbivory. Trends in Ecology and Evolution, 14, 179-185.
  48. Tsai, C. J., Harding, S. A., Tschaplinski, T. J., Lindroth, R. L. & Yuan, Y. N. (2006). Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytologist, 172, 47-62.
  49. Wakefield, M. E., Bell, H. A. & Gatehouse, A. M. R. (2010). Longevity and fecundity of Eulophus pennicornis, an ectoparasitoid of the tomato moth Lacanobia oleracea, is affected by nutritional state and diet quality. Agricultural and Forest Entomology,12, 19-27.
  50. Whipps, J. M. (2004). Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Canadian Journal of Botany, 82, 1198-1227.
  51. Wójcicka, A. (2010). Cereal phenolic compounds as biopesticides of cereal aphids. Polish Journal of Environmental Studies, 19, 1337-1343.