c3518cb17d976b8

رقابت و همپوشانی جمعیت شب پره های Ephestia kuehniella و Plodia interpunctella در شرایط تغذیه از میوه خرما

نوع مقاله : مقاله پژوهشی

نویسنده

سازمان تحقیقات، آموزش و ترویج کشاورزی، موسسه تحقیقات علوم باغبانی

چکیده

گونه‌‌های شب پره Plodia interpunctella و Ephestia kuehniella در انبارهای مواد غذایی از جمله خرما یافت می‌شوند. هدف از این پژوهش تعیین میزان رقابت و هم‌پوشانی شب‌پره‌های آفت انباری خرما بود. برای انجام آزمایش‌ها سه جعبه‌ی شیشه‌ای با ابعاد 40×50×50 سانتی‌متر طراحی شد. روی بدنه جعبه‌ها 9 سوراخ تعبیه شده که برای نمونه برداری ها مورد استفاده قرار گرفت. تغییرات جمعیت دو گونه در شرایط تغذیه از خرما در طول 24 هفته و با فواصل زمانی هر هفته یکبار بررسی شد. از مدل‌های سری زمانی برای مطالعه جمعیت دوگونه و معادله رشد لجستیک برای برآورد اثر تراکم یک گونه بر گونه دیگر مورد استفاده قرار گرفت. نتایج نشان داد که ظرفیت محیطی E. kuehniella و P. interpunctella به ترتیب معادل 2430 و 1610 و نرخ رشد جمعیت (r) به ترتیب معادل 2/1 و 3/1 بود. از هفته اول تا سوم حد تعادل جمعیت دو گونه نزدیک به هم بود. در هفته چهارم منجر به کاهش جمعیت شب پره E. kuehniella شد. بالاترین حد تعادل جمعیت دو گونه در هفته سیزدهم بود. پتانسیل آشیان بوم‌شناختی قابل بهره برداری (eij) و مقدار آشیان بوم‌شناختی بهره برداری نشده توسط هر گونه (zij) برای E. kuehniella از هفته هشتم تا انتهای دوره نمونه‌برداری بالاتر از P. interpunctella بود. میزان همپوشانی آشیان‌های بوم شناختی دو گونه(D) بین 1-97/0 متغیر بود که نشان دهنده همپوشانی کامل فعالیت زمانی جمعیت دو گونه شب‌پره بود. نتایج این پژوهش در کنار سایر مطالعات بوم‌شناسی جامعه حشرات آفات انباری خرما می‌تواند مورد استفاده متخصصین مدیریت تلفیقی آفات قرارگیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Competition and Overlap of Ephestia kuehniella and Plodia interpunctella Moth Populations in Date fruits nutrition condition

نویسنده [English]

  • Masoud Latifian
Agricultural Research, Extension and education organization, Horticulture science Research Institute
چکیده [English]

Plodia interpunctella and Ephestia kuehniella are found in food storages, including dates palm. The aim of this study was to determine the competition and overlap of date moths. Three glass boxes with dimensions of 50 × 50 × 40 cm were designed for the experiments. There were 9 holes on the boxes body for sampling. Population changes of the two species were monitored in the storage conditions during 24 weeks. Time series models were used to study species populations and logistic growth model to estimate the effect of density of one species on another. The results showed that the environmental capacity of E. kuehniella and P. interpunctella were 2430 and 1610 and the population growth rate (r) were 1.2 and 1.3, respectively. The species population balances were close together from first to third week. The population of E. kuehniella decreased at the fourth week. The highest population balance of the two species was in the 13th week the potential of exploitable ecological nests (eij) and the number of ecological nests exploited by any species (zij) for E. kuehniella was higher than P. interpunctella from 8th week until the end of the sampling period. The overlap of ecological nests of the two species (D) ranged from 0.97 to 0.97, indicating complete overlap of temporal activity of the two moth species populations on date palm feeding conditions. The results of this study, along with other ecological studies of the date stored pest insect community, can be used by integrated pest management experts.

کلیدواژه‌ها [English]

  • Storage insects
  • Biological competition
  • Temporal distribution
  • Overlap
  • Ecological niche
  1. Al-Antary, T., Khawaldeh, M. & Ateyyat, M. (2014). Diagnostic characters of date palm pests. Bothalia Journal, 44(7): 144-162.
  2. Anderson, P. & Löfqvist, J. (1996). Asymmetric oviposition behaviour and theinfluence of larval competition in the two pyralid moths Ephestia kuehniella and Plodia interpunctella. Oikos, 76, 47-56.
  3. Arbogast, R. T., Kendra, P. E. & McDonald, R. C. (2002). Infestation of a botanicals warehouse Plodia interpunctella and Ephestia elutella (Lepidoptera:Pyralidae). Entomological News, 113, 41-49.
  4. Baker, R. J. Bradley, R. D. (2006). Speciation in mammals and the genetic species concept. Journal of Mammalogy, 87(4): 643–662.
  5. Bao, J., Mao, X., Yin, G. & Yuan, C. (2011). Competitive Lotka–Volterra population dynamics with jumps. Nonlinear Anal. 74, 6601–6616.
  6. Bao, J. & Yuan, C. (2012). Stochastic population dynamics driven by Lévy noise. Journal of Mathematical Analysis. 391, 363–375
  7. Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T. & Villalobos, F (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11): 1810–1819.
  8. Cameron, T.C., Wearing, H.J., Rohani, P., Sait, S. M. & Memmot, J. (2005). A koinobiont parasitoid mediates competition and generates additive mortality in healthy host populations. Nordic Society Oikos, 110, 620–628.
  9. Claessen, D., de Roos, A.M. & Persson, L. (2004). Population dynamic theory of size-dependent cannibalism. Proceedings of the Royal Society of London Series B, Biological Sciences, 271, 333–340.

10. Corbet, A. S. & Tams, W. H. (1943). Keys for identification of Lepidoptera infesting stored for products. Proc. Zool. Soc. Ser. B., 113, pp. 55-145.

11. Cox, P. D. & Bell, C. H. (1981). A review of the biology of moth pests of stored products.- ADAS publication, Slough Laboratory, Berks, UK.

12. Doncaster, C. P. (2001). Healthy wrinkles for population dynamics: unevenly spread resources can support more users. Journal of Animal Ecology, 70, 91-100.

13. Ferrier, S., Manion, G., Elith, J. & Richardson, K. (2007). Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions, 13, 252–264.

14. Hengl, T., Sierdsema, H., Radovic´, A. & Dilo, A. (2009). Spatial prediction of species’ distributions from occurrence-only records: combining point pattern analysis, ENFA and regression-kriging. Ecological Modelling, 220, 3499–3511.

15. Heard, S. B. & Remer, L. C. (1997). Clutch size behaviour and coexistence in ephemeral-patch competition models. American Naturalist, 150, 744-770.

16. Higgins, S. I. & Cain, M. L. (2002). Spatially realistic plant metapopulation models and the colonisation-competition trade-off. Journal of Animal Ecology, 90, 616-626.

17. Jiang, L. & Morin, P. J. (2004). Productivity gradients cause positive diversity invasibility relationships in microbial communities. Ecology Letters, 7, 1047–1057.

18. Jones, T. A. (2003). The restoration gene pool concept: beyond the native versus non‐native debate. Restoration Ecology, 11(3): 281–290.

19. Latifian, M. Rad, B. & Ghamari, M. (2013). Determination the population density of different development stags of Mediterranean meal moth Ephestia kuheniella Zell. in Date fruit Sayer cultivar based on spectrophotometry. Journal of Plant Protection, 27(4), 491-510.

20. Latifian, M. & Rad, B. (2015). Determination of the population densities of different development stags of Sawtoothed beetle Oryzaephilus surinamensis L. in Date fruit) Sayer cultivar bausing spectrophotometry method. Journal of Etomology Research. 6(4): 353-365.

21. Mbata, G. N. (1990). Studies on the intraspecific larval interaction in a laboratory culture of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) on two food media. Insect Science Applications, 11, 245-251.

22. Mouquet, N., Moore, J. L. & Loreau, M. (2002). Plant species richness and community productivity: why the mechanism that promotes coexistence matters. Ecology Letters, 5, 56-65.

23. Murrell, D. J. & Law, R. (2003). Heteromyopia and the spatial coexistence of similar competitors. Ecology Letters, 6, 48-59.

24. Neuhauser, C. & Pacala, S. W. (1999). An explicitly spatial version of the Lotka- Volterra model with interspecific competition. Annual Applied Probability, 9, 1226-1259.

25. Pacala, S. W. & Levin, S. A. (1997). Biologically generated spatial pattern and the coexistence of competing species. In: Tilman D, Kareiva P (eds) Spatial ecology: The role of space in population dynamics and interspecific interactions. Princeton Univ Press, Princeton, pp 204–232

26. Pearman, P.B., Guisan, A., Broennimann, O. & Randin, C.F. (2008). Niche dynamics in space and time. Trends in Ecology and Evolution, 23, 149–158.

27. Poirier, L. M. & Borden, J. H. (1995). Oral exudate as a mediator of behavior in larval eastern and western spruce budworms (Lepidoptera, Tortricidae). Journal of Insect Behavior, 8, 801–811.

28. Poirier, L.M. & Borden, J. H. (2000). Influence of diet on repellent and feeding-deterrent activity of larval oral exudate in spruce budworms (Lepidoptera: Tortricidae). Canadian Entomologist, 132, 81–89.

29. Raxworthy, C. J., Ingram, C. M., Rabibisoa, N. & Pearson, R. G. (2007). Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Systematic Biology, 56(6): 907–923.

30. Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., Crozier, R. H. (2010). Integrative taxonomy: a multisource approach to exploring biodiversity. Annual Review of Entomology, 55: 421–438.

31. Stoll, P. & Prati, D. (2001). Intraspecific aggregation alters competitive interactions in experimental plant communities. Ecology, 82, 319-327.

32. Tilman, D. (1996). Biodiversity: population versus ecosystem stability. Ecology, 77, 350-363.

33. Warren, D.L., Glor, R.E. & Turelli, M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868–2883.

34. Wu, R., & Wang, K. (2014). Population dynamical behaviors of stochastic logistic system with jumps. Turkish Journal of Mathematics. 38, 935–948.

35. Zhang, Q., Jiang, D., Zhao, Y. & O’Regan, D. (2017). Asymptotic behavior of a stochastic population model with Allee effect by Lévy jumps. Nonlinear Analysis-Hybrid Systems. 24, 1–12.

36. Zou, X. & Wang, K. (2014). Numerical simulations and modeling for stochastic biological systems with jumps. Commun. Nonlinear Science and Numerical Simulation. 19, 1557–1568.