c3518cb17d976b8

تأثیر کود‌های ریز‌مغذی بر برخی از عملکردهای فیزیولوژیک لاروهای بالغ کفشدوزک Hippodamia variegata (Goeze) در تغذیه از Myzus persicae (Sulzer)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری حشره شناسی کشاورزی گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه لرستان، لرستان، ایران.

2 استاد گروه گیاهپزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان، لرستان، ایران.

3 دانش آموخته دکتری حشره شناسی گروه گیاهپزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی ، اردبیل، ایران

4 دانشیار گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه گیلان، گیلان، ایران.

چکیده

یکی از آفات مهم فلفل دلمه‌ای، شته سبز هلو، Myzus persicae (Sulzer)، است. یکی از شکارگرهای مهم شته سبز هلو در مراحل لاروی و حشره کامل، کفشدوزک Hippodamia variegata (Goeze) است. در مطالعه حاضر، تأثیر محلول‌پاشی ریز مغذی‌های آلفا آهن، بیومین‌های روی، مس و منگنز بر فعالیت آنزیم‌های آنتی‌اکسیدان، میزان اجسام ذخیره‌ای (پروتئین، گلیکوژن و تری‌گلیسرید) و عوامل غیرآنزیمی آنتی‌اکسیدان لاروهای سن سوم و چهارم H. variegata تغذیه شده با M. persicae روی فلفل دلمه بررسی شد. نتایج نشان داد بیشترین میزان پروتئین، گلیکوژن و تری‌گلیسرید به ترتیب در لاروهای سن سوم و چهارم شکارگر روی تیمارهای ریزمغذی نسبت به شاهد به دست آمد. همچنین فعالیت آنزیم‌های آنتی-اکسیدان (کاتالاز، سوپر‌اکسید‌دیسموتاز، پراکسیداز، آسکوربات‌پراکسیداز و گلوگز- 6 فسفات‌دهیدروژناز) و مقادیر ترکیبات غیر آنزیمی (مالون‌دی‏آلدهید و تیول) لاروهای سنین سوم و چهارم شکارگر به طور معنی‌داری در تغذیه از شته‌های پرورش‌یافته روی تیمارهای ریز‌مغذی در مقایسه با شاهد کاهش یافت. افزایش فعالیت سوپر‌اکسید‌دیسموتاز در تیمار شاهد می‌تواند نشان-دهنده بروز استرس اکسیداتیو در بدن شکارگر به دلیل تجمع پراکسید‌هیدروژن در بدن شته تحت تأثیر متابولیت‌های ثانویه باشد که منجر به افزایش فعالیت کاتالاز و پراکسیداز شده است. بنابراین، استفاده از عوامل کنترل بیولوژیک همراه با کود‌های ریز‌مغذی مختلف سبب افزایش میزان اجسام ذخیره‌ای و کاهش شرایط اکسیداتیو شد که می‌تواند بر فرآیندهای حیاتی شکارگر در قالب برنامه‌های مدیریت تلفیقی M. persicae موثر باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of micronutrient fertilizations on some of physiological functions of mature larvae of Hippodamia variegata (Goeze) fed on Myzus persicae (Sulzer

نویسندگان [English]

  • Tayebeh Alizamani 1
  • Jahanshir Shakarami 2
  • Mozhgan Mardani-Talaee 3
  • arash zibaee 4
1 Former Ph.D. student Entomology, Department of Plant Protection, Faculty of Agriculture and Natural Resources, Lorestan University, Lorestan, Iran.
2 Professor , Department of Plant Protection, Faculty of Agriculture and Natural Resources, Lorestan University, Lorestan, Iran.
3 Former Ph. D. Student Entomology, Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
4 Associate Professor, Department of Plant Protection, Faculty of Agriculture, University of Guilan-Rasht, Iran
چکیده [English]

, , Myzus persicae (Sulzer) is one of the severe pests of Capsicum annuum L.Hippodamia variegata (Goeze), is an important predator in both the larval and adult stages. In this study, effect of foliar application of micronutrient fertilizers included iron, zinc, copper and manganese were investigated on the activity of antioxidant enzymes, amount of antioxidant non-enzymatic compounds and storage-macromolecules (protein, glycogen and triglyceride) of the third and fourth instar larvae of H. variegata fed on M. persicae. Results showed that the higher amount of protein, glycogen and triglyceride of the third and the fourth instar larvae of H. variegata were obtained on micronutrient fertilizers. The activity of antioxidant enzymes (catalase, superoxide dismutase, peroxidase, ascorbate-peroxidase and glucose-6-phosphate dehydrogenase) and the amount of non-enzymatic compounds (malondialdehyde and thiol) significantly decerased in the third and the fourth instar larvae of H. variegata on the micronutrient treatments compared to control. The increase of superoxide dismutase activity can indicate the occurrence of oxidative stress in the body of the third and the fourth instar larvae of predator H. variegata could be assigned to the accumulation of H2O2 in the body of M. persicae under the influence of the defensive secondary metabolites, which led to increase the activity of catalase and peroxidase. Thus, use of biological control agents along to use of micronutrients fertilizers in the integrated management programs of M. persicae could be effective by increasing of the amount of storage macromolecules and decreasing oxidative conditions, which can affect the vital processes of the predator.

کلیدواژه‌ها [English]

  • Bell pepper
  • Green peach aphid
  • Hippodamia variegata
  • Antioxidant defense
  • Storage macromolecules
  1. Abdelsalam, S. A., Awad, A. M. A., Abdelrahman, M. A. A., Nasser, M. A. K. & Abdelhamid, M. R. (2016). Antioxidant defense response of the green peach aphid, Myzus persicae against secondary metabolites of the host plants cumin, anise, and coriander. Journal of Agricultural Science and Technology, 18, 1583-1592.
  2. Addy, S. K. & Goodman, R. N. (1972). Polyphenol oxidase and peroxidase in apple leaves inoculated with a virulent or an avirulent strain for Erwinia amylovora. Indian Phytopathology, 25, 575-579.
  3. Alizamani, T., Shakarami, J., Mardani-Talaee, M., Zibaee, A. & Serrão, J. E. (2020). Direct interaction between micronutrients and bell pepper (Capsicum annuum L.), to affect fitness of Myzus persicae (Sulzer). Journal of Plant Protection Research, 60, 253-262
  4. Alizamani, T., Shakarami, J., Mardani-Talaee M., Zibaee A. & Serrao J. E. (2021a). Induce of antibiotic resistance in bell pepper, Capsicum annuum L, against green peach aphid, Myzus persicae (Sulzer), by micronutrient fertilizers. Iranian Journal of Plant Protection Science, 52(2), 73-85.
  • Alizamani, T., Shakarami, J., Mardani-Talaee, M., Zibaee, A. & Serrão, J. E. (2021b). Micronutrient fertilizers affect the digestibility, intermediary metabolism, and oxidative stress in Myzus persicae (Sulzer). Neotropical Entomology, 50, 940-947.
  1. Asada, K. (1984). Chloroplasts: formation of active oxygen species and its scavenging. Methods in Enzymology, 105, 422-429.
  2. Babaei, K., Seyed Sharifi, R., Pirzad, A. & Khalilzadeh, R. (2017). Effects of biofertilizer and nano Zn-Fe oxide on physiological traits, antioxidant enzymes activity and yield of wheat (Triticum aestivum L.) under salinity stress. Journal of Plant Interactions, 12, 381-389.
  3. Balinsky, D. & Bernstein, R. E. (1963). The purification and properties of glucose-6- phosphate dehydrogenase from human erythrocytes. Biochimica et Biophysica Acta, 67, 313-315.
  4. Bar-Or, D., Rael, L. T., Lau, E. P., Rao, N. K., Thomas, G. W., Winkler, J. V., Yukl, R. L., Kingston, R. G. & Curtis, C. G. (2001). An analog of the human albumin N-terminus (Asp- Ala-His-Lys) prevents formation of copper-induced reactive oxygen species. Biochemical and Biophysical Research Communications, 284, 856-862.
  5. Capinera, J. L. (2001). Handbook of Vegetable Pests. Academic Press, San Diego, 729 pp.
  6. Chainy, G. B. N., Paital, B. & Dandapat, J. (2016). An overview of seasonal changes in oxidative stress and antioxidant defence parameters in some invertebrate and vertebrate species. Hindawi Publishing Corporation, 1-8.
  7. Chavez Mendoza, C., Sanchez, C., Munoz Marquez, E., Sida Arreola, J. P. & Flores Cordova, M. A. (2015). Bioactive compounds and antioxidant activity in different grafted varieties of bell pepper. Antioxidants, 4, 427-446.
  8. Chun, Y. & Yin, Z. D. (1998). Glycogen assay for diagnosis of female genital Chlamydia trachomatis infection. Journal of Clinical Microbiology, 36, 1081-1082.
  9. Dubovskiy, I. M., Martemyanov, V. V., Vorontsova, Y. L., Rantala, M. J., Gryzanova, E. V. & Glupov, V. V. (2008). Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comp Biochem Physiol Part C: Toxicol Pharmacol, 148, 1-5.
  10. Fallahpour, F., Ghorbani, R., Nassiri Mahallati, M. & Hosseini, M. (2015). Interaction of different nitrogen fertilization regimes of canola with mustard aphid (Lipaphis erysimi Kalt.) and the predatory gall midge (Aphidoletes aphidimyza Rondani). Biological Control of Pests and Plant Diseases, 4, 1-12.
  11. Ferreira, C. & Terra, W. R. (1983). Physical and kinetic properties of a plasma-membrane-bound P-Dglucosidase (cellobiase) from midgut cells of an insect Rhynchosciara americana larva. Biochemical Journal, 213, 43-51.
  12. Fossati, P. & Prencipe, L. (1982). Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clinical Chemistry, 28, 2077-2080.
  13. Francis, F., Gerkens, P., Harmel, N., Mazzucchelli, G., De Pauw, E. & Haubruge, E. (2006). Proteomics in Myzus persicae: Effect of aphid host plant switch. Insect Biochemistry and Molecular Biology, 36, 219-227.
  14. George, G. D. & Gatehouse, A. M. R. (2013). Oxidative stress enzymes in Busseola fusca. International Journal of Current Microbiology and Applied Sciences, 2, 485-495.
  15. Hahn, D. A. & Denlinger, D. L. (2007). Meeting the energetic demands of insect diapause: nutrient storage and utilization. Journal of Insect Physiology, 53, 760- 773.
  16. Hansch, R. & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12, 259-266.
  17. Ibrahim, A. M. & Ali, A. M. (2018). Silver and zinc oxide nanoparticles induce developmental and physiological changes in the larval and pupal stages of Spodoptera littoralis (Lepidoptera: Noctuidae). Journal of Asia-Pacific Entomology, 21, 1373-1378.
  18. Jena, K. K., Kumar, P., Kausar, Z. & Babu, C. S. (2013). Effects of temperature on modulation of oxidative stress and antioxidant defenses in testes of tropical tasar silkworm Antheraea mylitta. Journal of Thermal Biology, 38, 199-204.
  19. Kalushkov, P. & Hodek, I. (2004). The effects of thirteen species of aphids on some life history parameters of the ladybird Coccinella septempunctata. Biological Control, 50, 223-233.
  20. Kayser, H. and Palivan, C. G. (2006). Stable free radicals in insect cuticles: electron spin resonance spectroscopy reveals differences between melanization and sclerotization. Archives of Biochemistry and Biophysics, 453, 179-187.
  21. Khan, A. A. & Mir, R. A. (2008). Functional response of four predaceous coccinellid, Adalia tetraspilota (Hope), coccinella septempunectata L., Calvia punctata (Mulsant) and Hippodamia variegata (Goeze) feeding on green apple aphid, Aphis pomi De Geer (Homoptera: Aphididae). Biological control, 22, 291-298.
  22. Khramtsov, V. V., Yelinova, V. I., Glazachev, Y. I., Reznikov, V. A. and Zimmer, G. (1997). Quantitative determination and reversible modification of thiols using imidazolidine biradical disulfide label. Journal of Biochemical and Biophysical Methods, 35, 115-128.
  23. Krishnan, N., Kodrik, D., Kłudkiewicz, B. & Sehnal, F. (2009). Glutathione-ascorbic acid redox cycle and thioredoxin reductase activity in the digestive tract of Leptinotarsa decemlineata (Say). Insect Biochemistry and Molecular Biology, 39, 180-188.
  24. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275.
  25. Lyakhovich, V. V., Vavilin, V. A., Zenkov, N. K. & Menshchikova, E. B. (2006). Active defense under oxidative stress. The antioxidant responsive element. Biochemistry (Moscow), 71, 962-974.
  26. Mardani-Talaee, M., Zibaee, A., Nouri-Ganblani, G. & Razmjou, J., (2016). Chemical and organic fertilizers affect physiological performance and antioxidant activities in Myzus persicae (Hemiptera: Aphididae). Invertebrate Survival Journal, 13, 122-133.
  27. McCord, J. M. & Fridovich, I. (1969). Superoxide dismutase, An enzymic function for erythro-cuprein (hemocuprein). Journal of Biological Chemistry, 244, 6049-6055.
  28. Megali, L., Glauser, G. & Rasmann, S. (2014). Fertilization with beneficial microorganism’s decreases tomato defenses against insect pests. Agronomy for Sustainable Development, 34, 649-656.
  29. Meng, J. Y., Zhang, C. Y., Zhu, F., Wang, X. P. & Lei, C. L. (2009). Ultraviolet light-inducedoxidative stress: effects on antioxidant response of Helicoverpa armigera adults. Journal of Insect Physiology, 55, 588-592
  30. Mirab-balou, M. & Alizamani, T. (2022). The effect of nutritional interaction between micronutrient fertilizers and Capsicum annuum L. on the population growth of Aphidoletes aphidimyza Rondani as predator of green peach aphid. Journal of Iranian Plant Protection Research, 35, 481-494.
  31. Mottaghinia, L., Hassanpour, M., Razmjou, J., Chamani, E. & Hosseini, M. (2015). The effect of vermicompost on some biological characteristics of the melon aphid Aphis gossypii Glover and the predatory gall midge Aphidoletes aphidimyza Rondani on two cultivars of greenhouse cucumber. Applied research in plant protection, 4, 56-70.
  32. Nation, J. L. (2008). Insect physiology and biochemistry (2nd ed.). London: CRC press, UK.
  33. Obrycki, J. J. & Orr, C. J. (1990). Suitability of three prey species for Nearctic populations of Coccinella septempunctata, Hippodamia variegata and Propylea quatuordecimpunctata (Coleoptera: Coccinellidae). Journal of Economic Entomology, 83, 1292-1297.
  34. Omkar James, B. E. (2004). Influence of prey species on immature survival, development, predation and reproduction of Coccinella transversalis Fabricius (Col.: Coccinellidae). Journal of Applied Entomology, 128, 150-157.
  35. Omkar, O. & Srivastava, S. (2000). Influence of six aphid prey species on development and reproduction of ladybird beetle, Coccinella septempunctata. Biological Control, 48, 379-393.
  36. Pourya, M., Shakarami, J., Mardani-Talaee, M., Sadeghi, A. & Eduardo Serrão, J. (2021). Bio-fertilizers and micronutrients affect the digestibility, detoxification, and intermediary metabolisms of English grain aphid, Sitobion avenae, in greenhouse. Journal of Asia-Pacific Entomology, 24, 704-710.
  37. Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N. & Weis, A. (1980). Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies. Annual Reviews of Ecology and Systematics, 11, 41-65.
  38. Qin, D., Liu, B., Zhang, P., Zheng, Q., Luo, P., Ye, C., Zhao, W. & Zhang, Zh. (2021). Treating green pea aphids, Myzus persicae, with azadirachtin affects the predatory ability and protective enzyme activity of harlequin ladybirds, Harmonia axyridis. Ecotoxicology and Environmental Safety, 212, 111984.
  39. Rahimi, V., Hajizadeh, J., Zibaee, A. & Jalali sendi, J. (2017). Toxicity and physiological effects of an extracted lectin from Polygonum persicaria L. on Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Physiological and Molecular Plant Pathology, xxx, 1-7.
  40. Shamakhi, L., Zibaee, A., Karimi-Malati, A. & Hoda, H. (2020). Simultaneous effects of thermal stress and fungal infection on lipid peroxidation and antioxidant system of rice-striped stem borer, Chilo suppressalis Walker (Lepidoptera: Crambidae). Biological Rhythm Research, 51, 225-237.
  41. Steele, J. E. (1982). Glycogen- phosphorylase in insects. Insect Biochemistry, 12, 131-147.
  42. Thompson, S. N. (1999). Nutrition and culture of entomophagous insects. Annual Review of Entomology, 44, 561-592.
  43. Wang, Y., Oberley, L. W. & Murhammer, D. W. (2001). Evidence of oxidative stress following the viral infection of two Lepidopteran insect cell lines. Free Radical Biology and Medicine, 31, 1448-1455.
  44. Zhang, Sh., Fu, W., Li, N., Zhang, F. Liu, T-X. (2015). Antioxidant responses of Propylaea japonica (Coleoptera: Coccinellidae) exposed to high temperature stress. Journal of Insect Physiology, 73, 47-52
  45.