c3518cb17d976b8

ارزیابی تأثیر نانو ذرات نقره در کنترل بیماری پوسیدگی ریشه ناشی از قارچ Fusarium solani f. sp. phaseoli در گیاه لوبیا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتر وﺣﯿﺪ زرﯾﻦ ﻧﯿﺎ اﺳﺘﺎدﯾﺎر داﻧﺸﮑﺪه ﻋﻠﻮم ﮐﺸﺎورزی و ﺻﻨﺎﯾﻊ ﻏﺬاﯾﯽ داﻧﺸﮕﺎه آزاد اﺳﻼﻣﯽ واﺣﺪ ﻋﻠﻮم وﺗﺤﻘﯿﻘﺎت ﺗﻬﺮان

2 حامد شیخی دانشجوی کارشناسی ارشد بیوتکنولوژی و به نژادی کشاورزی دانشگاه علوم کشاورزی و صنایع غذایی داﻧﺸﮕﺎه آزاد اﺳﻼﻣﯽ واﺣﺪ

چکیده

گیاه گلرنگ با نام علمی L. tinctorius Carthamus از خانواده کمپوزیته و با فعالیت آنتی اکسیدانی می باشد. فعالیت ضد قارچی نانوذرات نقره سنتز شده توسط عصاره گل های گلرنگ علیه بیماری پوسیدگی ریشه لوبیا ناشی از قارچ Fusarium solani در شرایط آزمایشگاهی، گلخانه ای و مزرعه ای بررسی شد. سنتز نانوذرات نقره با روش آنالیز طیف سنجی) UV.Vis (تبدیل فوریه مادون قرمز (FTIR)، پراش اشعه ایکس(XRD) و میکروسکوپ الکترونی عبوری (TEM) ارزیابی شد. فاکتور شدت بیماری در هر بوته لوبیا چیتی(Phaseolus vulgaris L. ) مورد بررسی قرار گرفت. نتایج تشکیل نانوذرات نقره با تغییر رنگ محلول نیترات نقره به قهوه ای تیره بعد از اضافه کردن عصاره به محلول نیترات نقره تایید شد. وجود ماکزیمم جذب توسط آنالیز UV-Visدر محدوده 415 نانومتر دلیلی بر سنتز نانوذرات می باشد. میکروسکوپ الکترونی عبوری شکل نانوذرات را کروی نشان داد. آنالیز XRD اندازه متوسط نانوذرات را 20نانومتر نشان داد. در شرایط آزمایشگاهی، با استفاده از تکنیک اختلاط با محیط کشت حداقل غلظت مهارکنندگی رشد (MIC) روی نرخ رشد میسلیومی قارچ غلظت 200 پی پی ام شد. اثرات بازدارندگی نانوذرات در شرایط گلخانه ای غلظت 800 پی پی ام و در شرایط مزرعه ای غلظت 1000 پی پی ام با روش آغشته سازی بذرهای لوبیا با نانو ذرات مطلوب ارزیابی شد. نتایج تجزیه واریانس نشان داد که اثر متقابل بین غلظت نانو ذرات مختلف و تاثیر قارچ عامل بیماری بر روی شاخص های اندازه گیری شده معنی دار است.

کلیدواژه‌ها


عنوان مقاله [English]

Efect of biosynthesized silver nanoparticles on Fusarium solani the cause of root rot bean's disease

نویسندگان [English]

  • vahid zarrinnia 1
  • hamed sheykhi 2
1 Vahid Zarrinnia Assistant Professor, Faculty of Agricultural Sciences and Food Industries, Islamic Azad University, Research Sciences Branch, Tehran
2 Hamed Sheikhi, M.Sc. Student of Biotechnology and Breeding of Agriculture, Faculty of Agricultural Sciences and Food Industries, Islamic Azad University, Tehran Research Sciences Branch
چکیده [English]

The Safflower Carthamus with the scientific name tinctorius Carthamus L. belongs to the composite family and has antioxidant activity.Antifungal activity of silver nanoparticles synthesized by Safflower Carthamus extract was investigated against bean root rot disease caused by Fusarium solani in laboratory, greenhouse and field conditions.The synthesis of silver nanoparticles was evaluated by spectroscopic analysis (UV.Vis), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and transmission electron microscopy (TEM).Factor disease severity were investigated in each pinto bean (Phaseolus vulgaris L.) plant.The results of the formation of silver nanoparticles were confirmed by changing the color of the silver nitrate solution to dark brown after adding the extract to the silver nitrate solution. The existence of the absorption maximum by UV-Vis analysis in the range of 415 nm is a proof of the synthesis of nanoparticles.Transmission electron microscopy showed the shape of nanoparticles to be spherical. XRD analysis showed the average size of nanoparticles to be 20 nanometers.In laboratory conditions, using the technique of mixing with the culture medium, the minimum growth inhibitory concentration (MIC) on the mycelial growth rate of the fungus was 200 ppm. PPM was evaluated by impregnating bean seeds with nanoparticles. The results of analysis of variance showed that the interaction effect between the concentration of different nanoparticles and the effect of the disease-causing fungus on the measured indicators is significant.

کلیدواژه‌ها [English]

  • Green synthesis
  • AgNPs
  • Carthamus tinctorius
  • antifungal activity
  1. Abbot , W.S.(1925). A method of computing of the effectiveness of an insecticide. J. Econ. Entomol, 8, 265-267.
  2. Armendariz V, Herrera I, Peralta videa JR, Jose yacaman M. (2004). Size controlled gold nanoparticle formation by avena sativa biomass use of plants in nanobiotechnology. J Nanopart Res, 6, 377 -85.
  3. Baker, C.,Pradhan, A.,Pakslis, L. Pochan,Dj,Shah,Sl., (2005). "synthesis and antibacterial properties of silver nanoparticles".journal of Nano science Nanotechnology, 5, 244-249
  4. Basiri S H.(2011). [Investigation of the effect of temperature and air velocity in the dryer on the amount and quality of essential oil of Thymus]. Inn Sci Food Technol J , 4, 73 -82. (Persian)
  5. Burke, D. W., and Miller, D. E. (1983). Control of Fusarium root rot with resistant beans and cultural management. Plant Disease, 67, 1312- 1317.
  6. Burke DW & Hall R.( 1991). Fusarium root rot. In: Hall, R. (Ed.), Compendium of Bean Diseases. The American Phytopathological Society. (pp. 9-10). Paul, MN
  7. Dubey, S. P., Lahtinen, M., Sillanp, M. (2010). Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemistry, 45 (7), 1065–1071.
  8. Dubchak S, Ogar A, Mietelski JW, Turnau K. (2010). Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span Journal Agriculture Research; 8(1), 103-108.
  9. Dubeya S HP, Lahtinen M, Sillanpaaa M.(2010). Tansy fruit mediated greener synthesis of silver and gold Nanoparticles . Proce Biochem, 45, 1065 -71.
  10. Dwivedi AG, Gopol K.(2010). Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extracts. Coll Suf Phys Eng Asp , 360, 27 -33.
  11. Ekin, Z. (2008). Resurgence of safflower (Carthamus tinctorius L.) utilization : A global view. Journal of Agronomy, 4(2), 83-87.
  12. Foroghirad S, Khatibzadeh M.(2015). [Green synthesis of silver nanoparticles used in conductive inks using sonochemical method]. Iranian J Chem Eng , 34, 1 -9. (Persian)
  13. Gardea -Torresdey JL, Tiemann KJ, Gamez G, Dokken K, Tehuacanero S, Jose - Yacaman M. (1999). Gold Nanoparticles Obtained by Bio -Precipitation from Gold (III) Solutions. J Nanopart Res, 1, 397 -402.
  14. Hemath Naveen, K.S., Gaurav Kumar, Karthik, L., Bhaskara Rao, K.V. (2010). Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Archives of Applied Science Research, 2 (6), 161-167.
  15. Honary, S., Barabadi, H., Gharaei-Fathabad, E., and Naghibi, F. (2013). Green Synthesis of Silver Nanoparticles Induced by the synthesis and the characterization of metal substituted magnetites. Solid State Communications (vol. 118). (pp. 529-534).
  16. Hwang, E.T., Lee, J.H., Chae, Y.J., Kim, Y.S., Kim, B.C., Sang, B.and Gu, M.B. (2008). Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small, 4, 746–750.
  17. Ingle, A., Gade, A., Pierrat, S., Sonnichsen, C. and Rai, M. (2008). Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci, 4, 141–144.
  18. Jun, J., Yuan-Yuan, D., Shao-hai, W., Shao-feng, Z. and Zhongyi, W. (2007). Preparation and characterization of antibacterial silver-containing nanofibers for wound dressing applications. J US China Med Sci, 4, 52–54.
  19. Kaiser, W.j., Danesh, D.,Okkhovat, M. & Mossahebi, G.H. (1968). Disease of pulse crops (edible legumes) in iran .PI. Dis. Reptr, 52:681 – ;Iran. J. Plant Path,4(3).
  20. Karamkash, M., M., rich and young, M. (2006). The application of silver nanoparticles in the control of plant diseases and pests. The first nanotechnology conference in the southern region Country, Shiraz University.
  21. Kaviya S, Santhanalakshmi J, Viswanathan B. (2010). Green Synthesis of Silver Nanoparticles Using Polyalthia longifolia Leaf extract along with D -Sorbitol study of antibacterial activity. J Nanotechnol, 2011, 1 -5.
  22. Kawahara, K., Tsuruda, K., Morishita, M. and Uchida, M. (2000). Antibacterial effect of silver zeolite on oral bacteria under anaerobic condition. Dent Mater, 16, 452–455.
  23. Knetsch, M.L.W. and Leo, H.K. (2011). New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers, 3, 340–366.
  24. Koyama, N., Kuribayashi,K., Seki, T., Kobayashi, K., Furuhata, Y., Suzuki, K. e t a l. (2006). Serotonin derivatives, major safflower (Carthamus tinctorius L.) seed antioxidants, inhibit low-density lipoprotein(LDL) oxidation and atherosclerosis in apolipoprotein E-Deficient mice. Journal of Agricultural and Food Chemistry, 54, 4970-76.
  25. Kumar, A.S., Ansary, A.A., Ahmad, A., Khan, M.I. (2007a). Extracellular biosynthesis of CdSe quantumdots by the fungus, Fusarium oxysporum. Journal of Biomedical Nanotechnology, 3, 190–194.
  26. Landsdown, A.B.G. (2002). Silver I: its antibacterial properties and mechanism of action. J Wound Care, 11, 125–138.
  27. Luo, L.B., Yu, S.H., Qian, H.S., and Zhou, T. (2005). Large-scale fabrication of flexible silver/cross-linked poly (vinyl alcohol) coaxialnanoscale by a facial solution approach. Journal of the American Chemical Society, 127(9), 2822–2823. doi, 10.1021/ja0428154.
  28. Majnoon Hosseini N. ( 1997). Iranian beans. University Jihad Publications, University of Tehran.
  29. Maple, P.A.C., Hamilton-Miller, J.M.T. and Brranfltt, W. (1992). Comparison of the in-vitro activities of the topical antimicrobials azelaic and, nitroforazone, silver sulphadiazine and mupirocin against methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother, 29, 661–668.
  30. Morones, J.R., Elechiguerra, J.L., Camacho, A. and Ramirez,J.T. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346–2353.
  31. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S. (2002). Shape effects in Plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys, 116, 6755 -9.
  32. Nanda, A., Saravanan, M. (2009). Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine, NBM, 5, 452–456.
  33. Nelson, P.E., (1981). A.A. Bell, and C.H. Becman. (eds.), Fungal wilt dieseae of plant. Academic press, New Yourk, Pp. 5-80.
  34. Nikoobakht, B., Wang, J., El-Sayed, M. A. (2002). Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: offsurface plasmon resonance condition.Chemical Physics Letters, 366, 1-2, 17–23.
  35. Park, H.J., Sung, H. K., Hwa, J. K., Seong, H. C. (2006). A new composition of nanosized silicasilver for control of various plant diseases. Journal of Plant Pathology, 22(3), 295-302.
  36. Philip D. (2010). Green synthesis of gold and silver nanoparticles using Hibiscus rosasinensis. Physica E , 42, 1417 -24.
  • Poor Rahim, Reza . (2011). Nanotechnology is a powerful tool for sustainable agricultural development.
  1. Praveen Kumar k, Paul W, Chandra P SH. (2007). Green synthesis of gold nanoparticles with Zingiber officinale extracts characterization and blood compatibility. Proce Biochem , 46, 2007 -13.
  2. Rai A, Singh A, Ahmad A, Sastry M. (2006). Role of halide ions and temperature on the morphology of biologically synthesized gold Nano triangles. Langmuir , 2, 736 –741.
  3. Rajasekharreddy, P., Rani, P. U., Sreedhar, B. (2010). Qualitative assessment of silver and gold nanoparticle synthesis in various plants: a photobiological approach. Journal of Nanoparticle Research, 12 (5), 1711–1721.
  4. Salem, N., Msaada, K., Hamdaoui, Gh., Limam, F.and Marzou k, B. (2011). Variation in Phenolic Composition and Antioxidant Activity during Flower Development of Safflower(Carthamus tinctorius L .). Journal of Agricultural and Food Chemistry, 59, 4455 –63.
  5. Sanghi, R., Verma, P. (2009). Biomimetic synthesis and characterisation of protein capped silver nanoparticle. Bioresourc Technology, 100(1), 501-4.
  6. Saremi H, Mohammadi J and Okhovvat SM. ( 2007). Naz, a resistance cultivar on bean root rot disease in Zanjan province, northern Iran. Communications in Agricultural and Applied Biological Sciences, 72,757-764.
  7. Sarkar, J., Chattopadhyay, D., Deo, S.S., Patra, S , Sinha, S., Ghosh, M., Mukherjee, A. (2011). Alternaria alternata mediated synthesis of protein capped silver nanoparticles and their genotoxic activity. Digest Journal of Nanomaterials and Biostructures, 6(2), 563-573.
  8. Sarkar, J., Dey P., Saha S., Acharya K. (2011). Mycosynthesis of selenium nanoparticles. Micro and Nano Letters, 6, 599–602.
  9. Sastry, M., Ahmad, A., Khan, M.I., Kumar, R. (2003). Biosynthesis of metal nanoparticles using fungi and actinomycrtes.Curr Sci, 85(2),162-170.
  10. Sathyavathi R, Krishna MB, Rao SV, Saritha R, Rao DN. (2010). Biosynthesis of silver nanoparticles using Cori-andrum Sativumleaf extract and their application innonlinear optics. Adv Sci Lett, 3, 1–6.
  11. Senapati, S., Ahmed, A., Khan, M.I., Kumar, R. and Sastry, M. (2005). Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small, 1, 517-520.
  12. 49.Shameli,K.,Ahmad,M.B.,Zamanian,A.,Sangpour,P.,Shabanzadeh,P.,Abdollahi,Y.,etal.(2012).Greenbiosynthesis of silver nanoparticlesusing Curcumalongatuber powder. International Journal of Nanomedicine, 7, 5603–5610.
  13. Shenya DS, Mathewa J, Philip D. (2011). Phytosynthesis of Au Ag and Au -Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Acta Mole Biomole Spect , 79, 254 -62.
  14. Shokrzadeh M, Saeedisaravi SS. (2010). The chemistry pharmacology and clinical properties of Sambucus ebulus a review. J Med Plants Res, 4, 95 -103
  15. Sippell, D. W., and Hall, R. (1982). Effects of pathogen species, inoculum concentration, temperature, and soil moisture on bean root rot and plant growth. Canadian Journal of plant pathology, 4, 1-7.
  16. Supraja S, Chakravarthy N, Sagadevan K. ( 2013). Green Synthesis of Silver Nanoparticles from Cynodon dactylon leaf extract. J Chem Technol Res, 1, 271 -277.
  17. Uskokovic, V. (2008). Nanomaterials and nanotechnologies: approaching the crest of this big wave. Current Nanoscience, 4, 119–12.56. Zhang, H.L., Nagatsu, A.,Watanabe, T., Sakakibara, J.and Okuyama, H.(1997). Antioxidative compounds isolated from safflower (Carthamust tinctorius L.) oil cake. Chemical and pharmaceutical bulletin(Tokyo),45(12), 1910-14.
  18.  
  19. 55. Waghmar SS, Deshmukh AM, Sadowski Z. (2014). Biosynthesis, optimization, purification and characterization of gold nanoparticles. African J Microbiol Res, 2, 138 -46