c3518cb17d976b8

زیست شناسی دمایی کرم گلوگاه انار Ectomyelois ceratoniae Zeller (Lep.: Pyralidae) بر اساس مدل‌های خطی روز- درجه و ایکموتو و تاکای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیارگروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 دانشجوی دکتری گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران.

3 گروه گیاهپزشکی-پژوهشکده کشاورزی هسته ای-پژوهشگاه علوم و فنون هسته ای-کرج-ایران

چکیده

کرم گلوگاه انار، (Lep.: Pyralidae) Ectomyelois ceratoniae Zeller ، آفتی اقتصادی، پلی‌فاژ و با پراکنش جهانی است که بعضی از محصولات باغی و انباری را مورد حمله قرار می‌‌دهد. طول‌ دوره‌‌ی رشدونمو دوره‌ جنینی‌ (تخم‌)، سنین‌ مختلف‌ لاروی، شفیرگی‌ و کل‌ دوره‌ی نابالغ‌ کرم گلوگاه انار با استفاده از دو مدل خطی روز- درجه و ایکموتو و تاکای در دامنه‌ی دمایی‌ ٣٥-10 درجه‌‌ی سلسیوس در شرایط آزمایشگاهی بررسی‌ شد. بر اساس نتایج، دما، طول‌ دوره‌ی رشد‌و‌نمو مراحل‌ رشدی کرم گلوگاه انار را در سطح‌ احتمال‌ یک‌ درصد تحت‌ تاثیر قرار داد و افزایش‌ دما کاهش‌ طول‌ دوره‌ رشـــد و نمو را بدنبال‌ داشـــت‌. در این تحقیق از مدل‌‌های خطی‌ روز-درجه‌ و ایکموتو و تاکای به‌ منظور توصیف‌ اثر دما بر رشد‌و‌نمو کرم گلوگاه انار استفاده شد. هر چند هر دو مدل‌ برازش‌ مناسبی‌ روی داده‌‌ها داشتند، ولی‌ با توجه‌ به‌ معیار‌های آماری، مقادیر برآورد شده‌ توسط‌ مدل ایکموتو و تاکای به‌ عنوان‌ شاخص‌‌های دمایی‌ کرم گلوگاه انار در نظر گرفته‌ شد. بر اساس‌ نتایج‌ به‌ دست‌ آمده‌ از مدل خطی ایکیموتو و تاکای، نیاز گرمایی‌ مراحل‌ رشدی جنینی‌، کل‌ دوره‌ لاروی، شــفیرگی‌ و کل‌ دوره‌ نابالغ‌ کرم گلوگاه انار به‌ ترتیب‌ 19/46، 73/577، 44/167 و00/831 روز-درجه‌ بود و مقادیر دمای آستانه‌ پایین‌ دمای رشد‌و‌نمو برای مراحل‌ یاد شده‌ با به‌ کارگیری مدل‌ ایکیموتو و تاکای به‌ ترتیب‌ 29/11، 29/4، 55/4 و 83/4 درجه‌ سلسیوس‌ برآورد شــد.

کلیدواژه‌ها


عنوان مقاله [English]

Thermal biology Carob moth, Ectomyelois ceratoniae Zeller (Lep.: Pyralidae) Based on Degree-Day and Ikemoto-Takai linear models

نویسندگان [English]

  • Soltan Ravan 1
  • Kabir Eyidozehi 2
  • Mahmoud Soufbaf 3
  • Abbas Khani 1
1 Associate Professorse of Plant Protection, Department of Plant Protection, Faculty of Agriculture, University of Zabol, Zabol, Iran.
2 PHD Student, Department of Plant Protection, University of Zabol, Zabol, Iran.
3 Plant Protection Department-Nuclear Agriculture Research School- NSTRI- Karaj- Iran
چکیده [English]

Carob moth, Ectomyelois ceratoniae Zeller (Lep.: Pyralidae) is an economic pest, polyphagous, and globally distributed that attacks many crops throughout field and storage times. Developmental time of incubation period, larval period, pupal period, and overall immature stages of the carob moth were recorded in temperatures ranging from 10 to 35 °C under laboratory conditions. According to results outputs, temperature affected significantly developmental time of the carob moth at 1% significance level and increasing temperature lead to decreasing developmental time. Degree-Day and Ikemoto-Takai linear models were used to describe temperature-dependent development of the carob moth in this research. Although both of the linear models had shown an acceptable fitting to the experimental data, due to better statistical criteria, estimation of the Ikemoto-Takai linear model was considered as thermal indices of the pest. Estimated values for thermal requirement of incubation period, total larval period, pupal period and overall immature stages of the carob moth were 46.19, 577.73, 167.44 and 831.00 degree-days, respectively. Moreover, the values of the lower temperature threshold for the mentioned developmental stages were 11.29, 4.29, 4.55 and 4.83°C, respectively, using Ikemoto-Takai linear model.

کلیدواژه‌ها [English]

  • Physiological development time
  • Growth and development
  • linear model
  • Ectomyelois ceratoniae
  1. Abderrahmane, C., Dhouibi, M.H. & Mahjoub, A., 2002. Effet de l’irradiation sur certains paramètres éco-physiologiques et sur la stérilité héritée des adultes de la pyrale des dattes irradiés à différents doses de rayonnement gamma. Revue de l'Institut National Agronomique de Tunisie, 17(1), pp.465-470.
  2. Aghdam, H. R., Fathipour, Y., Radjabi, G., & Rezapanah, M. (2009). Temperature-dependent development and temperature thresholds of codling moth (Lepidoptera: Tortricidae) in Iran. Environmental Entomology, 38(3), 885-895.
  3. Campbell, A., Frazer, B. D., Gilbert, N. G. A. P., Gutierrez, A. P., & Mackauer, M. (1974). Temperature requirements of some aphids and their parasites. Journal of applied ecology, 431-438.
  4. Damos, P., & Savopoulou-Soultani, M. (2012). Temperature-driven models for insect development and vital thermal requirements. Psyche. 13 pages.
  5. Damos, P., Rigas, A., & Savopoulou-Soultani, M. (2011). Application of Markov Chains and Brownian motion models on insect ecology. Brownian motion: theory, modelling and applications, 71-104.
  6. Davidson, J. (1944). On the relationship between temperature and rate of development of insects at constant temperatures. The Journal of Animal Ecology, 26-38.
  7. De Clercq, P., & Degheele, D. (1992). A meat-based diet for rearing the predatory stinkbugs Podisus maculiventris and Podisus sagitta [Het.: Pentatomidae]. Entomophaga, 37(1), 149-157.
  8. Dent, D. (2000). Insect pest management 2nd edition, Chapman & Hall, London.
  9. Farrar, N., Zamani, A., Moini Naghadeh, N., Azizkhani, E. & Haghani, M. (2016). Estimation of development threshold and thermal requirements of Jujube lappet moth Streblote siva (Lefebvre). Iranian Journal of Forest and Range Protection Research, 13(2), 150-159.
  10. Gothilf, S. (1969). A contribution to the biology of Phanerogam flavitestacea A parasite of Ectomyelois ceratoniae (Zell.). Israel Journal of Entomology, 4, 55-71.
  11. Hartley, S., & Lester, P. J. (2003). Temperature-dependent development of the Argentine ant, Linepithema humile (Mayr)(Hymenoptera: Formicidae): a degree-day model with implications for range limits in New Zealand. New Zealand Entomologist, 26(1), 91-100.
  12. Huffaker C. B. & Gutierrez, A. P. (1998). Ecological entomology, John Wiley, Canada, 756 pp.
  13. Ikemoto, T., & Takai, K. (2000). A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environmental Entomology, 29(4), 671-682.
  14. Jerbi-Elayed, M., Lebdi-Grissa, K., Le Goff, G., & Hance, T. (2015). Influence of temperature on flight, walking and oviposition capacities of two aphid parasitoid species (Hymenoptera: Aphidiinae). Journal of Insect Behavior, 28(2), 157-166.
  15. Kontodimas, D. C., Eliopoulos, P. A., Stathas, G. J., & Economou, L. P. (2004). Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models using specific criteria. Environmental Entomology, 33(1), 1-11.
  16. López, C., Sans, A., Asin, L., & EizaGuirre, M. (2001). Phenological model for Sesamia nonagrioides (Lepidoptera: Noctuidae). Environmental Entomology, 30(1), 23-30.
  17. Mediouni, J., Fuková, I., Frydrychová, R., Dhouibi, M.H. and Marec, F., 2004. Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). Caryologia, 57(2), pp.184-194.
  18. Moshtaghi Maleki, F., Iranipour, Sh., Hejazi, M. & Saber, M (2015). Forecasting the incidence of Lobesia botrana (Denis &Schiffermuller) (Lepidoptera:Tortricidae) in Malekan and Marand vineyards: Northwest of Iran. Thesis for the degree of Ph.D. in Ecology and Biological control, Department of Plant Protection, Faculty of Agriculture, University of Tabriz.
  19. Nay, J. E. (2006). Biology, ecology, and management of the carob moth, Ectomyelois ceratoniae (Zeller)(Lepidoptera: Pyralidae), a pest of dates, Phoenix dactylifera, in southern California. University of California, Riverside.
  20. Price, P. W. (1997). Insect ecology. John Wiley & Sons.
  21. Ranjbar Aghdam, H., Ghasemi, M. & Karimpour, Y. (2020). Estimation of the low temperature threshold and thermal requirement of the established codling moth populations in West Azerbaijan, Tehran and Isfahan provinces. Iranian Journal of Plant Protection Science, 51(2), 265-274.
  22. Ranjbar Aghdam, H., Yousefi Porshokouh, A., & Sedighi, L. (2015). Temperature-dependent life table parameters of Galleria mellonella (L.)(Lepidoptera: Pyralidae). Journal of Crop Protection, 4(5), 727-738.

 

  1. Shakeri, M. Pomegranate Pests and Diseases. Tasbih Publication, Yazd, Iran. 126 pp. (In Farsi).
  2. Shakeri, M., & Daneshvar, M. (2004). Conference report on the achievements and problems of management Carob, Ectomyelois ceratoniae. Research Center for Agriculture and Natural Resources of Yazd, Iran, p. 13. (In Farsi).
  3. Soofbaf, M., Salehi, B., Kalantarian, N., Zanganeh, A., Babaei, M., Fathollahi, H., Ahari Mostafavi, H., Mansourifard, M., Hoseini Baghdad Abad, S., Mirvakili, S., Zare beydaki, R., Tollabi, H., Amiri Aqda, S. (2017). Using sterile insect technique against Carob moth, Ectomyelois ceratoniae (Zeller) (Lep.: Pyralidae), in Yazd province, Iran. Journal of Entomological Society of Iran, 37(1), 55-65.
  4. Sun, Z. J., Chen, D., Fan, X. J., Liu, L., Cheng, Y. J., Zhang, C. H. & Liu, X. D. (2014). Antennal ultrastructure of Aphidius gifuensis and the effect of cold storage on antennae. Scientia Agricultura Sinica, 47, 4637-4647.
  5. Soltani Orang, F., Ranjbar Aghdam, H., Abbasipour, H., & Askarianzadeh, A. R. (2014). Estimation of Lower Temperature Threshold and Thermal Requirements for Development of Sesamia cretica (Lep., Noctuidae) Using. Journal of Applied Research in Plant Protection3(2), 45-55.
  6. Tazerouni, Z., Talebi, A. A., & Rakhshani, E. (2012). Temperature-dependent functional response of Diaeretiella rapae (Hymenoptera: Braconidae), a parasitoid of Diuraphis noxia (Hemiptera: Aphididae). Journal of the Entomological Research Society, 14(1), 31-40.
  7. Terblanche, J. S., Deere, J. A., Clusella-Trullas, S., Janion, C., & Chown, S. L. (2007). Critical thermal limits depend on methodological context. Proceedings of the Royal Society B: Biological Sciences274(1628), 2935-2943.
  8. Wagner, T. L., Wu, H. I., Sharpe, P. J., Schoolfield, R. M., & Coulson, R. N. (1984). Modeling insect development rates: a literature review and application of a biophysical model. Annals of the Entomological Society of America, 77(2), 208-220.
  9. Warner, R. L., Barnes, M. M. and Laird, E. F. (1990). Chemical control of a carob moth Ectomyelois ceratoniae (Lep:pyralidae), and nitidulid beetles on ‘Deglet Noor’ dates in California. Journal Economic Entomology, 83(6):2357-2361.