c3518cb17d976b8

شناسایی و بررسی الگوی بیان ژن پروتئین ذخیره‌ای هگزامرین (Hexamerin) در حشرات دیاپوزی و غیر دیاپوزی سن گندم Eurygaster integriceps

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پردیس کشاورزی و منابع طبیعی دانشگاه تهران، دانشکده علوم و مهندسی کشاورزی، گروه گیاه پزشکی بخش حشره شناسی

2 گروه گیاهپزشکی ، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج ، ایران

3 گروه گیاهپزشکی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران ،کرج، ایران.

4 موسسه زیست شناسی تکاملی (Institut de Biologia Evolutiva)، دانشگاه پمپئوفابرا، بارسلونا، اسپانیا

چکیده

دیاپوز یک سازگاری فیزیولوژیکی است که امکان بقای موجود زنده تحت شرایط سخت را فراهم می‌کند. سن گندم Eurygaster integriceps Put. (Heteroptera: Scutellaridae)، آفت کلیدی گندم و جو و حشره‌ای تک نسلی است که چرخه زندگی این آفت دارای دو فاز متفاوت است، فاز تولیدمثلی و دیاپوز مرحله بالغ. در این پژوهش الگوی بیان ژن پروتئین ذخیره‌ای هگزامرین در اجسام چربی حشرات ماده سن گندم، در دو فاز در حال دیاپوز و خارج از دیاپوز، با استفاده از آنالیز کمی Real time PCR بررسی شد. بیان ژن هگزامرین در ماده‌های دیاپوزی سن گندم 4/6 برابر بالاتر از ماده‌های غیر دیاپوزی بود. نتایج پیش‌بینی قرارگیری درون سلولی و سیگنال پپتید نشان می‌دهد که این پروتئین در دسته پروتئین‌های خارج سلولی قرار می‌گیرد. بر اساس نتایج آنالیز فیلوژنتیک و آنالیز هم‌ردیفی توالی آمینو اسیدی ژن هگزامرین در سن گندم و سایر گونه‌های سن متعلق به راسته همی‌پترا، توالی آمینو اسیدی در کلاد متعلق به راسته همی‌پترا قرار گرفت (با عدد بوت استرپ100) و شباهت و نزدیکی بسیار زیادی را به توالی آمینو اسیدی ژن هگزامرین در سن برگی قهوه‌ای Halyomorpha halys نشان داد (شباهت 6/62 درصد). شناسایی ژن هگزامرین به‌عنوان یک شاخص بیوشیمیایی قابل اعتماد در فاز دیاپوز سن گندم می‌تواند یک گزینه مناسب و ارزشمند در جهت انجام مطالعات آتی مرتبط با دیاپوز در سطوح سلولی و ملکولی در این آفت باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Identification and gene expression analysis of Hexamerin storage protein in diapausing and non-diapausing insects of Sunn pest, Eurygaster integriceps

نویسندگان [English]

  • zeynab alborzi 1
  • Ali R. Bandani 2
  • ahmad ashouri 3
  • mdolors piulachs 4
1 Department of Plant Protection, University College of Agricultural and Natural Resources, University of Tehran
2 Plant Protection Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
4 Institute of Evolutionary Biology (CSIC- Pompeu Fabra University), Barcelona, Spain
چکیده [English]

Diapause is a physiological adaptation that allows an organism to survive adverse environmental conditions. Sunn pest, Eurygaster integriceps (Heteroptera: Scutelleridae), is a key pest of wheat and barley and univoltine species and its life cycle has two different phases, reproductive phase, and adult stage diapause. In this study, the gene expression patterns of Hexamerin storage protein were evaluated by quantitative Real-Time PCR assay in diapause and non-diapause female insects, in the Sunn pest’s fat body. The Hexamerin gene expression in diapausing females of sunn pest was 6.4 times higher than in non-diapausing females. The results of subcellular localization and signal peptide prediction suggested that the protein was categorized as an extracellular protein. According to phylogenetic analysis and multiple alignment analysis of the Sunn pest’s Hexamerin amino acid sequence and other bugs belonging to the Hemiptera order, the amino acid sequence was placed at clade belonging to the Hemiptera order (with 100 bootstrap number) and revealed high similarity and closeness to brown marmorated stink bug, Halyomorpha halys Hexamerin gene amino acid sequence (identity 62.6%). Identifying the Hexamerin gene as a reliable biochemical indicator for Sunn pest diapause can be a proper and valuable candidate for further studies at the cellular and molecular levels in this pest.

کلیدواژه‌ها [English]

  • Biochemical indicator
  • Alignment analysis
  • Phylogenetic analysis
  • Signal peptide
  • Diapause
  1. Amiri, A., Bandani, A., & Darvishzadeh, A. (2012). Effects of the insect growth regulators methoxyfenozide and pyriproxyfen on adult diapause in sunn pest eurygaster integriceps (Hemiptera: Scutelleridae). Journal of Agricultural Science and Technology, 14(6), 1205-1218.
  2. Amiri, A., Bandani, A. R., & Alizadeh, H. (2016). Molecular identification of cysteine and trypsin protease, effect of different hosts on protease expression, and rnai mediated silencing of cysteine protease gene in the sunn pest. Archives of Insect Biochemistry and Physiology, 91(4), 189-209.
  3. Beintema, J. J., Stam, W. T., Hazes, B., & Smidt, M. P. (1994). Evolution of arthropod hemocyanins and insect storage proteins (hexamerins). Molecular biology and evolution, 11(3), 493-503.
  4. Bitondi, M. M., Nascimento, A. M., Cunha, A. D., Guidugli, K. R., Nunes, F. M., & Simões, Z. L. (2006). Characterization and expression of the Hex 110 gene encoding a glutamine‐rich hexamerin in the honey bee, Apis mellifera. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America, 63(2), 57-72.
  5. Burmester, T. (1999). Evolution and function of the insect hexamerins. European Journal of Entomology, 96, 213-226.
  6. Burmester, T. (2002). Origin and evolution of arthropod hemocyanins and related proteins. Journal of Comparative Physiology B, 172(2), 95-107.
  7. Burmester, T. (2004). Evolutionary history and diversity of arthropod hemocyanins. Micron, 35(1-2), 121-122.
  8. Burmester, T. (2015). Expression and evolution of hexamerins from the tobacco hornworm, Manduca sexta, and other Lepidoptera. Insect biochemistry and molecular biology, 62, 226-234.
  9. Burmester, T., & Schellen, K. (1996). Common origin of arthropod tyrosinase, arthropod hemocyanin, insect hexamerin, and dipteran arylphorin receptor. Journal of Molecular Evolution, 42(6), 713-728.
  10. Chinzei, Y., Miura, K., Kobayashi, L., Shinoda, T., & Numata, H. (1992). Cyanoprotein: Developmental stage, sex and diapause‐dependent expression, and synthesis regulation by juvenile hormone in the bean bug, Riptortus clavatus. Archives of Insect Biochemistry and Physiology, 20(1), 61-73.
  11. Chippendale, G. (1988). Roles of proteins in insect diapause. Endocrinological Frontiers in Physiological Insect Ecology, 331-346.
  12. Corpuz, L. M., Choi, H., Muthukrishnan, S., & Kramer, K. J. (1991). Sequences of two cDNAs and expression of the genes encoding methionine-rich storage proteins of Manduca sexta. Insect Biochemistry, 21(3), 265-276.
  13. Cunha, A. D., Nascimento, A. M., Guidugli, K. R., Simões, Z. L., & Bitondi, M. M. (2005). Molecular cloning and expression of a hexamerin cDNA from the honey bee, Apis mellifera. Journal of Insect Physiology, 51(10), 1135-1147.
  14. De Kort, C. (1996). Cosmic influences on the expression of a specific gene in the Colorado potato beetle: the diapause protein 1 gene. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America, 32(3‐4), 567-573.
  15. De Kort, C., & Koopmanschap, A. (1994). Nucleotide and deduced amino acid sequence of a cDNA clone encoding diapause protein 1, an arylphorin-type storage hexamer of the Colorado potato beetle. Journal of Insect Physiology, 40(6), 527-535.
  16. Denlinger, D. L., & Armbruster, P. A. (2014). Mosquito diapause. Annual review of entomology, 59, 73-93.
  17. Dizlek, H., & Özer, M. S. (2017). Improvement bread characteristics of high level sunn pest (Eurygaster integriceps) damaged wheat by using transglutaminase and some additives. Journal of cereal science, 77, 90-96.
  18. Eliautout, R., Dubrana, M.-P., Vincent-Monégat, C., Vallier, A., Braquart-Varnier, C., Poirié, M., Saillard, C., Heddi, A., & Arricau-Bouvery, N. (2016). Immune response and survival of Circulifer haematoceps to Spiroplasma citri infection requires expression of the gene hexamerin. Developmental & Comparative Immunology, 54(1), 7-19.
  19. Hahn, D. A., & Denlinger, D. L. (2011). Energetics of insect diapause. Annual review of entomology, 56, 103-121.
  20. Hejnikova, M., Paroulek, M., & Hodkova, M. (2016). Decrease in Methoprene tolerant and Taiman expression reduces juvenile hormone effects and enhances the levels of juvenile hormone circulating in males of the linden bug Pyrrhocoris apterus. Journal of Insect Physiology, 93, 72-80.
  21. Hwang, U. W., Friedrich, M., Tautz, D., Park, C. J., & Kim, W. (2001). Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature, 413(6852), 154-157.
  22. Jamroz, R. C., Beintema, J. J., Stam, W. T., & Bradfield, J. Y. (1996). Aromatic hexamerin subunit from adult female cockroaches (Blaberus discoidalis): molecular cloning, suppression by juvenile hormone, and evolutionary perspectives. Journal of Insect Physiology, 42(2), 115-124.
  23. Jones, G., Manczak, M., & Horn, M. (1993). Hormonal regulation and properties of a new group of basic hemolymph proteins expressed during insect metamorphosis. Journal of Biological Chemistry, 268(2), 1284-1291.
  24. Kanost, M. R., Kawooya, J. K., Law, J. H., Ryan, R. O., Van Heusden, M. C., & Ziegler, R. (1990). Insect haemolymph proteins. In Advances in insect physiology (Vol. 22, pp. 299-396). Elsevier.
  25. Lewis, D., Spurgeon, D., Sappington, T., & Keeley, L. (2002). A hexamerin protein, AgSP-1, is associated with diapause in the boll weevil. Journal of Insect Physiology, 48(9), 887-901.
  26. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 25(4), 402-408.
  27. Lombardo, F., & Christophides, G. K. (2016). Novel factors of Anopheles gambiae haemocyte immune response to Plasmodium berghei infection. Parasites & vectors, 9(1), 1-6.
  28. Ma, G., Rahman, M. M., Grant, W., Schmidt, O., & Asgari, S. (2012). Insect tolerance to the crystal toxins Cry1Ac and Cry2Ab is mediated by the binding of monomeric toxin to lipophorin glycolipids causing oligomerization and sequestration reactions. Developmental & Comparative Immunology, 37(1), 184-192.
  29. Ma, G., Roberts, H., Sarjan, M., Featherstone, N., Lahnstein, J., Akhurst, R., & Schmidt, O. (2005). Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Helicoverpa armigera larvae? Insect biochemistry and molecular biology, 35(7), 729-739.
  30. Macpherson, J. S., Jodrell, D. I., & Guichard, S. M. (2006). Validation of real-time reverse-transcription-polymerase chain reaction for quantification of capecitabine-metabolizing enzymes. Analytical biochemistry, 350(1), 71-80.
  31. Magee, J., Kraynack, N., Massey Jr, H. C., & Telfer, W. H. (1994). Properties and significance of a riboflavin‐binding hexamerin in the hemolymph of Hyalophora cecropia. Archives of Insect Biochemistry and Physiology, 25(2), 137-157.
  32. Martins, J. R., Nunes, F. M. F., Simões, Z. L. P., & Bitondi, M. M. G. (2008). A honeybee storage protein gene, hex 70a, expressed in developing gonads and nutritionally regulated in adult fat body. Journal of Insect Physiology, 54(5), 867-877.
  33. Memmel, N. A., Trewitt, P. M., Grzelak, K., Rajaratnam, V. S., & Kumaran, A. K. (1994). Nucleotide sequence, structure and developmental regulation of LHP82, a juvenile hormone-suppressible hexamerin gene from the waxmoth, Galleria mellonella. Insect biochemistry and molecular biology, 24(2), 133-144.
  34. Miller, S., & Silhacek, D. (1995). Riboflavin binding proteins and flavin assimilation in insects. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 110(3), 467-475.
  35. Miura, K., Shinoda, T., Yura, M., Nomura, S., Kamiya, K., Yuda, M., & Chinzei, Y. (1998). Two hexameric cyanoprotein subunits from an insect, Riptortus clavatus: Sequence, phylogeny and developmental and juvenile hormone regulation. European journal of biochemistry, 258(3), 929-940.
  36. Nicholas, K. B. (1997). GeneDoc: analysis and visualization of genetic variation. Embnew. news, 4, 14.
  37. Palli, S., Ladd, T., Ricci, A., Primavera, M., Mungrue, I., Pang, A., & Retnakaran, A. (1998). Synthesis of the same two proteins prior to larval diapause and pupation in the spruce budworm, Choristoneura fumiferana. Journal of Insect Physiology, 44(5-6), 509-524.
  38. Pan, M., & Telfer, W. H. (1999). Equivalence of riboflavin‐binding hexamerin and arylphorin as reserves for adult development in two saturniid moths. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America, 42(2), 138-146.
  39. Pick, C., Schneuer, M., & Burmester, T. (2010). Ontogeny of hemocyanin in the ovoviviparous cockroach Blaptica dubia suggests an embryo-specific role in oxygen supply. Journal of Insect Physiology, 56(5), 455-460.
  40. Poopathi, S., Thirugnanasambantham, K., Mani, C., Mary, K. A., Mary, B., & Balagangadharan, K. (2014). Hexamerin a novel protein associated with Bacillus sphaericus resistance in Culex quinquefasciatus. Applied biochemistry and biotechnology, 172(5), 2299-2307.
  41. Saraswathi, S., Bodampalli Sarvesh, C., Kiran, T., Ravindran, M., Ramachandra, S., Rao, K. V., & Doddamane, M. (2021). A comparative protein profile of accessory glands of virgin and mated Leucinodes orbonalis males. Physiological Entomology, 46(1), 60-69.
  42. Spiliotopoulos, A., Gkouvitsas, T., Fantinou, A., & Kourti, A. (2007). Expression of a cDNA encoding a member of the hexamerin storage proteins from the moth Sesamia nonagrioides (Lef.) during diapause. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 148(1), 44-54.
  43. Šula, J., Kodrik, D., & Socha, R. (1995). Hexameric haemolymph protein related to adult diapause in the red firebug, Pyrrhocoris apterus (L.)(Heteroptera). Journal of Insect Physiology, 41(9), 793-800.
  44. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution, 28(10), 2731-2739.
  45. Tang, B., Wang, S., & Zhang, F. (2010). Two storage hexamerins from the beet armyworm Spodoptera exigua: cloning, characterization and the effect of gene silencing on survival. BMC molecular biology, 11(1), 1-13.
  46. Tian, Y., Qu, Y., Dong, K., He, S., Jie, W., & Huang, J. (2021). Characterization and Developmental Expression Patterns of Four Hexamerin Genes in the Bumble Bee, Bombus terrestris (Hymenoptera: Apidae). Journal of Insect Science, 21(5), 13.
  47. Tsai, M. C., Tsai, C. L., & Chen, M. E. (2014). cDNA cloning and transcriptional expression profiles of a hexamerin in the oriental fruit fly, Bactrocera dorsalis. Archives of Insect Biochemistry and Physiology, 86(3), 180-191.
  48. Wang, J., Fan, H., Wang, P., & Liu, Y.-H. (2019). Expression analysis reveals the association of several genes with pupal diapause in Bactrocera minax (Diptera: Tephritidae). Insects, 10(6), 169.
  49. Wang, S., Hu, B., Wei, Q., & Su, J. (2019). Cloning and characterization of hexamerin in Spodoptera exigua and the expression response to insecticide exposure. Journal of Asia-Pacific Entomology, 22(2), 602-610.
  50. Wolschin, F., & Gadau, J. (2009). Deciphering proteomic signatures of early diapause in Nasonia. PloS one, 4(7), e6394.
  51. Xu, S., Wu, Y., Liu, Y., Zhao, P., Chen, Z., Song, F., Li, H., & Cai, W. (2021). Comparative mitogenomics and phylogenetic analyses of Pentatomoidea (Hemiptera: Heteroptera). Genes, 12(9), 1306.
  52. Zhai, Y., Lin, Q., Zhang, J., Zhang, F., Zheng, L., & Yu, Y. (2016). Adult reproductive diapause in Drosophila suzukii females. Journal of Pest Science, 89(3), 679-688.
  53. Zhou, X., Tarver, M. R., & Scharf, M. E. (2007). Hexamerin-based regulation of juvenile hormone-dependent gene expression underlies phenotypic plasticity in a social insect.
  54. Zhu, J. Y., Ye, G. Y., Fang, Q., Hu, C., & Akhtar, Z. r. (2009). cDNA of an arylphorin‐type storage protein from Pieris rapae with parasitism inducible expression by the endoparasitoid wasp Pteromalus puparum. Insect Science, 16(3), 227-236.