c3518cb17d976b8

مهار زیستی بیماری پوسیدگی ذغالی گوجه‌فرنگی و طالبی با استفاده از قارچ های اندوفیت در شرایط آزمایشگاهی و گلخانه ای

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه حشره‌شناسی و بیماری‌های گیاهی، دانشکده فناوری کشاورزی ابوریحان، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، تهران، ایران

چکیده

قارچ Macrophomina phaseolina عامل بیماری پوسیدگی ذغالی، پوسیدگی ساقه و گیاهچه است که سالانه باعث خسارت اقتصادی در بیش از 500 گونه گیاهی از جمله گوجه‌فرنگی و طالبی در سرتاسر دنیا می­شود. از مهم‌ترین و موثرترین روش‌های مبارزه جایگزین برای سموم شیمیایی و کاهش خطرات ناشی از آن، مهار زیستی با عوامل مختلف از جمله قارچ­های اندوفیت می‌باشد. در مطالعه حاضر، تاثیر چند قارچ اندوفیت روی بیماری پوسیدگی ذغالی و شاخص‌های رشدی گیاه گوجه‌فرنگی و طالبی بررسی شد. در آزمون کشت متقابل، از بین دوازده گونه اندوفیت، پنج جدایه شامل Chaetomium globosum 2S1، Ch. globosum 3L2، Fusarium fujikuroi 37F6، Fusarium acuminatum GO2L1 و Fusarium incarnatum 25S3 که بیشترین میزان بازدارندگی از رشد رویشی قارچ بیمارگر را داشتند، برای آزمون‌ها انتخاب شدند. در آزمون ترکیبات فرار، همه جدایه‌های اندوفیت بیش از 90 درصد بازدارندگی از رشد رویشی قارچ بیمارگر را نشان دادند. در آزمون مهار زیستی بیماری در شرایط گلخانه‌ای، همه جدایه­های قارچی به غیر از F. fujikori 37F6 به طور کامل از وقوع بیماری روی هر دو گیاه گوجه‌فرنگی و طالبی جلوگیری کردند. در ارزیابی شاخص‌های رشدی و با مقایسه گیاهان تیمار شده با شاهد آلوده و سالم، اثرات مثبتی از جدایه‌های اندوفیتی منتخب در ارتقاء شاخص‌های رشدی گیاهچه­های هر دو گونه محصول زراعی مشاهده نشد. با این حال، آن­ها اثرات سوء عامل بیماری‌زا را کاهش داده و در نتیجه باعث کاهش علائم بیماری پوسیدگی ذغالی شدند. جداسازی مجدد جدایه‌های اندوفیت از دو گیاه طالبی و گوجه‌فرنگی مایه­زنی شده نشان داد که جدایه­های مورد ارزیابی توانایی اندوفیت شدن در بافت گیاهی را دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Biocontrol of charcoal rot disease on tomato and melon using endophytic fungi in vitro and in vivo

نویسندگان [English]

  • Fatemeh Tadayyon Rad
  • Leila Ebrahimi
Department of Entomology and Plant Pathology, College of Agricultural Technology, University College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran.
چکیده [English]

Macrophomina phaseolina causal agent of charcoal rot, stem, and seedling rot, causes economic losses on over 500 plant species including tomato and melon around the world every year. One of the most important and effective alternative methods for chemicals and reducing their risks is biocontrol using different agents such as endophytic fungi. In the present study, the effect of some endophytic fungi on charcoal rot disease and the growth indices of tomato and melon plants were assessed. In the dual culture test, among the 12 endophyte species, five isolates including Chaetomium globosum 2S1, Ch. globosum 3L2, Fusarium fujikuroi 37F6, F. acuminatum GO2L1, and F. incarnatum 25S3 which had the highest inhibition of pathogen mycelia growth, were selected for further tests. In the volatile compounds test, all endophytic isolates showed more than 90% inhibition of pathogen mycelia growth. In biocontrol assay under greenhouse conditions, all endophytic isolates except F. fujikori 37F6, completely prevented disease on both tomato and melon plants. In the evaluation of the growth indices and by comparing the treated plants with the infected and healthy controls, no positive effect of the selected endophytic isolates was observed on the growth indices of both plants. However, they reduced the harmful effects of the pathogen and thus reduced the charcoal rot disease severity. Recovery of endophyte isolates from both inoculated melon and tomato plants showed that the surveyed isolates can become endophytes in plant tissue.

کلیدواژه‌ها [English]

  • Antagonist
  • Biological control
  • Endophytic fungus
  • Macrophomina phaseolina
  • Volatile organic compounds

Extended Abstract

Introduction

    Macrophomina phaseolina causal agent of charcoal rot, stem, and seedling rot, causes economic losses on over 500 plant species including tomatoes and melon around the world. Chemical control of this disease is difficult and dangerous for the environment. Biological control has been explored as a new and safe means of managing charcoal rot. One of the most important and effective alternative methods for chemicals and reducing their risks is biocontrol using different agents such as endophytic fungi. Endophytic fungi grow inside the host tissue without any damage or symptoms and are considered as biocontrol agents. They play an important role in balancing ecosystems, as well as benefiting the host through increasing plant growth and protecting the host plants from abiotic and biotic stresses using various strategies.

 

Materials and Methods

    In this research, the effect of several endophytic fungi on charcoal rot disease and the growth indices of tomato and melon plants were investigated. Dual culture and volatile organic compounds (VOCs) tests were conducted to select the best antagonists for further assays. Tomato and melon were used in the in vivo experiments to evaluate the antagonism of the endophytic fungi against charcoal rot disease as well as plant growth parameters. The experiments were conducted in a completely randomized design for in vitro and in vivo tests.

 

Results and Discussion

    In the dual culture test of 12 endophytes, five isolates including Chaetomium globosum 2S1, Ch. globosum 3L2, Fusarium fujikuroi 37F6, Fusarium acuminatum GO2L1, and Fusarium incarnatum 25S3 which had the highest inhibitory rate on pathogen mycelia growth, were selected for further tests. In the volatile organic compounds (VOCs) test, all isolates showed more than a 90% inhibitory rate against pathogen growth. According to the results of in vitro, F. fujikori 37F6 had the lowest disease inhibition rate on both tomato and melon plants under greenhouse conditions. Based on the results obtained in the evaluation of the growth indices and by comparing the treated plants with the infected and healthy controls, it can be concluded that the selected endophytic isolates in this research did not affect the growth indices of both plants. However, they reduced the harmful effects of the pathogen and thus reduced the disease severity. Also, selected endophyte isolates were re-isolated from both melon and tomato plants after inoculation and showed that they can become endophyte in plant tissue and these fungi exhibit systemic growth within their hosts.

 

Conclusion

   In this study, the isolates that controlled the disease under greenhouse conditions could therefore be considered the best candidates for the development of endophytic-based bio-fungicide and could be integrated as a component in a sustainable integrated crop management strategy for charcoal rot disease. However, further studies are warranted to clearly understand the underlying mechanisms by which the presence of endophytic fungi affect M. phaseolina as well as validate the findings under field conditions on different cultivars of tomato and melon.

پاس، مژگان .، شهبازی، حدیث.، و ابراهیمی، لیلا (1399). بررسی اثر مهار زیستی قارچ phaseolina  Macrophominaتوسط باکتری سودوموناس فلورسنت بر روی لوبیا و ارزیابی میزان فنل کل ریشه. یافته­های نوین در علوم زیستی، 7 (1)، 64-75.
زراعتکار، محدثه.، بهبودی، کیوان.، و بردی­فتوحی­فر، خلیل. (1399). ارزیابی برخی قارچ­های اندوفیت گیاهی در کنترل بیولوژیک بیماری پژمردگی ورتیسیلیومی گوجه فرنگی.‎ کنترل بیولوژیک آفات و بیماری‌های گیاهی، 9 (2)، 103-114.
خیری، عباس .، اعتباریان، حسن­رضا.، روستایی، علی.، خداکرمیان، غلام.، و امینیان، حشمت­اله (1388). بررسی امکان کنترل بیولوژیک بیماری ساق سیاه خربزه (Macrophomina phaseolina) با استفاده از جدایه­های Pseudomonas fluorescens. مجله کشاورزی (منتشر نمی شود)، 11 (1)، 35-46.‎
کاری دولت­آبادی، حسین.، اسدی رحمانی، هادی.، و رجالی، فرهاد (1398). شناسایی و بررسی خصوصیات محرک رشدی و بیوکنترلی قارچ‌های اندوفیت جدا شده از برگ و میوه پسته. زیست شناسی خاک، 7 (1)، 53-71.‎
عراقی، میرمعصوم.، و رهنما‌، کامران (1390). ارزیابی جدایه‌های Bacillus subtilis در کنترل بیولوژیکی پوسیدگی ریشه آفتابگردان ناشی از Macrophomina phaseolina (Tassi) Goid. گیاه پزشکی (مجله علمی کشاورزی)، 34 (1)، 1-11.
 غفاریان، احمدرضا (1379). مبارزه بیولوژیک با M. phaseolina عامل بیماری ساق سیاه خربزه توسط قارچهای آنتاگونیست تریکودرما و گلیوکلادیوم. پایان نامه کارشناسی ارشد دانشگاه اهواز. 101 صفحه.
REFRENCES
Alabouvette, C., Olivain, C., Migheli, Q., & Steinberg, C. (2009). Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt‐inducing Fusarium oxysporumNew Phytologist, 184 (3), 529-544.
Aly, A.H., Debbab, A., & Proksch, P. (2011). Fungal endophytes: unique plant inhabitants with great promises. Applied Microbiology and Biotechnology, 90, 1829-1845.
Amirita, A., Sindhu, P., Swetha, J., Vasanthi, N.S., & Kannan, K.P. (2012). Enumeration of endophytic fungi from medicinal plants and screening of extracellular enzymes. World Jornal of Science and Technology, 2 (2), 13-19.
Asran-Amal, A., Moustafa-Mahmoud, S.M., Sabet, K.K., & El Banna, O.H. (2010). In vitro antagonism of cotton seedlings fungi and characterization of chitinase isozyme activities in Trichoderma harzianumSaudi Journal of Biological Sciences, 17(2), 153-157.
Bergougnoux, V. (2014). The history of tomato: from domestication to biopharming. Biotechnology Advances, 32 (1), 170-189.
Chamorro, M., Miranda, L., Domínguez, P., Medina, J. J., Soria, C., Romero, F., ... & De los Santos, B. (2015). Evaluation of biosolarization for the control of charcoal rot disease (Macrophomina phaseolina) in strawberry. Crop Protection, 67, 279-286.
Dennis, C., & Webster, J. (1971). Antagonistic properties of species-groups of Trichoderma: I. Production of non-volatile antibiotics. Transactions of the British Mycological Society, 57 (1), 25-IN3.
Dolatabadi, H.K., Javan-Nikkhah, M., & Shier, W.T. (2017). Evaluation of antifungal, phosphate solubilisation, and siderophore and chitinase release activities of endophytic fungi from Pistacia veraMycological Progress, 16, 777-790 (In Persian).
Ebrahimi L., Hatami Rad S., & Etebarian H.R. (2022). Apple endophytic fungi and their antagonism against apple scab disease. Frontiers in Microbiology, 13, 1024001. 10.3389/fmicb.2022.1024001.
Eitenmiller, R.R., Johnson, C.D., Bryan, W.D., Warren, D.B., & Gebhardt, S.E. (1985). Nutrient composition of cantaloupe and honeydew melons. Journal of Food Science, 50 (1), 136-138.
Eraghi, M.M., & Rahnama, K. (2010). Evaluation of Bacillus subtilis isolates in biological control of sunflower root rot caused by Macrophomina phaseolina (Tassi) Goid. JPP, 34 (1), 1-11 (In Persian).
Etebarian, H.R., Sholberg, P.L., Eastwell, K.C., & Sayler, R.J. (2005). Biological control of apple blue mold with Pseudomonas fluorescensCanadian Journal of Microbiology, 51 (7), 591-598.
Etebarian, H.R., Kheiri, A., Roustaei, A., Khodakaramian, G.H., & Aminian, H. (2007). Evaluation of Pseudomonas isolates for biological control of charcoal stem rot of melon caused by Macrophomina phaseolina. Acta Horticulture, 761: 157-162 (In Persian).
Farr, D.F., & Rossman, A.Y. (2014). Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved November. 10, 2014.
Ghafarian, A.R. (2000). Biological control of Macrophomina phaseolina causual agant of charchoal rot disease by antagonistic fungi Trichoderma spp. & Ghliocladium virens. Master thesis, Ahwaz University. 101p (In Persian).
Gan, Z., Yang, J., Tao, N., Liang, L., Mi, Q., Li, J., & Zhang, K.Q. (2007). Cloning of the gene Lecanicillium psalliotae chitinase Lpchi1 and identification of its potential role in the biocontrol of root-knot nematode Meloidogyne incognitaApplied Microbiology and Biotechnology, 76, 1309-1317.
Gray, L.E. (1978). Effect of soil fumigation on soybean diseases and plant yield. Plant Disease Reporter, 62, 613–615.
González, V., Armijos, E., & Garcés-Claver, A. (2020). Fungal endophytes as biocontrol agents against the main soil-borne diseases of melon and watermelon in Spain. Agronomy, 10 (6), 820.
Jamal, A., Farhat, H., Urooj, F., Rahman, A., Irfan, M., & Ehteshamul-Haque, S. (2021). Characterization of endophytic yeast and its suppressive effect on root rotting fungi of tomato under neem cake soil amendment. Egyptian Journal of Biological Pest Control, 31, 1-12.
Jimenez-Diaz, R.M., Blanco-López, M.A., & Sackston, W.E. (1983). Incidence and distribution of charcoal rot of sunflower caused by Macrophomina phaseolina in Spain. Plant Disease, 67 (9), 1033-1036.
Klemsdal, S.S., Clarke, J.L., Hoell, I.A., Eijsink, V.G., & Brurberg, M.B. (2006). Molecular cloning, characterization, and expression studies of a novel chitinase gene (ech30) from the mycoparasite Trichoderma atroviride strain P1. FEMS. Microbiology letters, 256 (2), 282-289.
Kumar, B.M. (2020). Efficacy of different fungicides and weedicides against Macrophomina phaseolina (Tassi) Goid causing groundnut root rot. IJCS, 8 (2), 2464-2472.
Laur, L. M., & Tian, L. (2011). Provitamin A and vitamin C contents in selected California-grown cantaloupe and honeydew melons and imported melons. Journal of Food Composition and Analysis, 24(2), 194-201.
Lillbro, M. (2005). Biocontrol of Penicillium roqueforti on grain: A comparison of mode of action of several yeast species (Doctoral dissertation, Sveriges lantbruksuniversitet).
Lodha, S., & Mawar, R. (2020). Population dynamics of Macrophomina phaseolina in relation to disease management: A review. Journal of Phytopathology, 168 (1), 1-17.
Morath, S.U., Hung, R., & Bennett, J.W. (2012). Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biology Reviews, 26 (2-3), 73-83.
Moin, S., Rahman, A., Parveen, G., Korejo, F., Shafique, H.A., Zehra, R., ... & Ehteshamul-Haque, S. (2021). Amelioration of systemic resistance in tomato against root rotting fungi by the endophytic Trichoderma species. Pakistan Journal of Botany, 53 (1), 321-327.
Pahlavani, M.H., Razavi, S.E., Mirizadeh, I., & Vakili, S. (2006). Field screening of safflower genotypes for resistance to charcoal rot disease. International Journal of Plant Production, 1: 45-52.
Parmar, H., Kapadiya, H.J., & Bhaliya, C.M. (2018). Integrated management of root rot of castor (Ricinus communis L.) caused by Macrophomina phaseolina (Tassi) Goid. International Journal of Chemical Studies, 6 (1), 849-851.
Pas, M., Shahbazi, H., & Ebrahimi, L. (2020). The biocontrol potential of Pseudomonas fluorescens against Macrophomina phaseolina and estimating the total phenol compounds of bean roots. Nova Biologica Reperta, 7 (1), 64-75. (In Persian).
Pearson, C.A.S., Schwenk, F.W., Crowe, F.J., & Kelley, K. (1984). Colonization of soybean roots by Macrophomina phaseolinaPlant Disease, 68 (12), 1086-1088.
Porras-Alfaro, A., & Bayman, P. (2011). Hidden fungi, emergent properties: endophytes and microbiomes. Annual Review of Phytopathology, 49, 291-315.
Romanazzi, G., Lichter, A., Gabler, F.M., & Smilanick, J.L. (2012). Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biology and Technology, 63 (1), 141-147.
Ranvijay, P.M., Kumar, A., & Mishra, S. (2020). In vitro efficacy of bioagents and fungicides on the management of dry root rot of cluster bean (Macrophomina phaseolina). International Journal of Current Microbiology and Applied Sciences, 9 (9), 2022-2033.
Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., & Glick, B.R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92-99.
Schalchli, H., Tortella, G.R., Rubilar, O., Parra, L., Hormazabal, E., & Quiroz, A. (2016). Fungal volatiles: an environmentally friendly tool to control pathogenic microorganisms in plants. Critical Reviews in Biotechnology, 36 (1), 144-152.
Shehzad, S.A., Sattar, A., & Ghaffar, A. (1988). Addition to the hosts of Macrophomina phaseolina. Pakistan Journal of Botany, 20, 151-152.
Short, G.E., Wyllie, T.D., & Ammon, V.D. (1978). Quantitative enumeration of Macrophomina phaseolina in soybean tissues. Phytopathology. 68 (5), 736-741.
Sinclair, J.B., & Backman, P.A. (1989). Compendium of soybean diseases (No. BOOK). American Phytopathological Society.
Smith, G.S., and Carvil, O.N. (1997). Field screening of commercial and experimental soybean cultivars for their reaction to Macrophomina phaseolina. Plant Disease, 81, 363–368.
Sridharan, A.P., Thankappan, S., Karthikeyan, G., & Uthandi, S. (2020). Comprehensive profiling of the VOCs of Trichoderma longibrachiatum EF5 while interacting with Sclerotium rolfsii and Macrophomina phaseolinaMicrobiological Research, 236, 126436.
Strobel, G., & Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67 (4), 491-502.
Toghueo, R.M.K., Ejiya, I.E., Sahal, D., Yazdani, S.S., & Boyom, F.F. (2017). Production of cellulolytic enzymes by endophytic fungi isolated from Cameroonian medicinal plants. International Journal of Current Microbiology and Applied Sciences, 6 (2), 1264-1271.
Wyllie, T.D., & Scott, D.H. (1988). Soybean diseases of the north central region. APS Press.
Zeratkar, M., Behboudi, K., & Fotouhifar, K.B. (2021). Evaluation of some plant endophytic fungi in biological control of tomato Verticillium wilt disease. Biological Control of Pests and Plant Diseases, 9 (2), 103-114 (In Persian).