c3518cb17d976b8

اثر نانوذرات اکسیدروی، اکسیدمس و دی‌اکسیدسیلیکون بر مهار پوسیدگی انگور ناشی از قارچ‌های Aspergillus niger Tiegh.، Botrytis cinerea Pers. و Penicillium expansum Link. در شرایط دمای اتاق

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی و مهندسی فضای سبز، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

این پژوهش به‌منظور بررسی تأثیر نانوذرات اکسیدروی، اکسیدمس و دی‌اکسیدسیلیکون بر کنترل سه بیمارگر قارچی Aspergillus niger، Botrytis cinerea و Penicillium expansum روی انگور رقم شاهروردی در شرایط دمای اتاق در قالب طرح کاملاً تصادفی اجرا گردید. نتایج نشان داد که محلول‌پاشی خوشه‌های انگور با نانو اکسیدروی و نانو دی‌اکسیدسیلیکون منجر به بیشترین مهار پوسیدگی انگورهای تلقیح شده با قارچ‌های A. niger و B. cinereal شد که تفاوت معنی‌داری نسبت به شاهد نشان داد. کمترین پوسیدگی نیز از محلول‌پاشی خوشه‌های انگور با نانو اکسیدروی و نانو اکسیدمس بر انگورهای تلقیح شده با P. expansum به‌دست آمد، بیشترین پوسیدگی نیز در انگورهای شاهد مشاهده شد. نانو اکسیدروی همچنین باعث افزایش مواد جامد محلول کل در میوه‌های انگور تلقیح شده با A. niger شد. حبه و ساقه انگورهای تلقیح شده با قارچ‌های مورد آزمایش پس از تیمار با نانوذرات اکسیدروی ظاهر بهتری نسبت به میوه‌های تیمار شده با سایر نانوذرات اکسید فلزی و شاهد داشتند. علاوه‌براین، میوه‌های تلقیح شده با A. niger و محلول‌پاشی شده با نانو اکسیدروی و نانو دی‌اکسیدسیلیکون، محتوای فنل بیشتری نسبت به سایرین داشتند. محتوای آنتوسیانین میوه‌های انگور تلقیح شده با B. cinerea و تیمار شده با نانو اکسیدروی به‌طور معنی‌داری بیشتر از میوه‌های محلول‌پاشی شده با سایر نانوذرات اکسید فلزی و شاهد بود. همچنین، در میوه‌های انگور تلقیح شده با A. niger و P. expansum، بیشترین فعالیت آنتی‌اکسیدانی به‌ترتیب از طریق محلول‌پاشی با نانو اکسیدروی و محلول‌پاشی با نانو اکسیدروی و نانو اکسیدمس به‌دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the effects of zinc oxide, copper oxide, and silicon dioxide nanoparticles on the control of grape rot caused by Aspergillus niger Tiegh., Botrytis cinerea Pers. and Penicillium expansum Link. at room temperature

نویسندگان [English]

  • Fahimeh Feyzi Laeen 1
  • Bahram Abedy 1
  • Gholam Hossein Davarynejad 1
  • Parissa Taheri 2
1 Department of Horticultural Science and Landscape Architecture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

This study is completely randomized research aimed to investigate the effects of zinc oxide, copper oxide, and silicon dioxide nanoparticles on the control of grape (Vitis vinifera cv. Shahroodi) rot caused by Aspergillus niger, Botrytis cinerea, and Penicillium expansum fungi at room temperature. The results of this research showed that the rotting of grapes that were infected by A. niger and B. cinerea was greatly inhibited by spraying grape bunches with nano-zinc oxide and nano-silicon dioxide. The lowest rate of rotting in grapes infected with P. expansum was also obtained by spraying grape bunches with nano-zinc oxide and nano-copper oxide. Nano-zinc oxide also increased total soluble solids in grape fruits inoculated with A. niger, although it had no significant effect on grapes inoculated with other fungi. Also, the results showed that the berry and stem of the grapes which were infected with fungi and treated with nano-zinc oxide had a better appearance compared to the fruits treated with other nanoparticles and the control. Furthermore, fruits infected with A. niger, and sprayed with nano-zinc oxide and nano-silicon dioxide had higher phenol contents compared to the samples treated with other nanoparticles and control. Anthocyanin content in grapes infected with B. cinerea and treated with zinc oxide nanoparticles was significantly higher than in controls and samples treated with other nanoparticles. In grape fruits infected with A. niger and P. expansum, antioxidant activity was increased by spraying with nano-zinc oxide, and nano-zinc oxide, and nano-copper oxide, respectively.

کلیدواژه‌ها [English]

  • Antifungal activity
  • antioxidant activity
  • inhibitory effect
  • phenol
  • post-harvest

Extended Abstract

Introduction

One of the most important problems in the postharvest quality of fruits is the control of fungal rot, which leads to economic losses every year by decreasing fruit quality. Grapes (Vitis vinifera) are among the fruits that are very sensitive to fungal rot after harvest. On the other hand, due to the risks of using synthetic fungicides and chemicals, consumer demands for healthy, fresh, and organic foods have increased. Therefore, researchers are seeking safe, effective, and economical alternative methods. Recently, metal oxide nanoparticles have been proposed as an alternate due to their strong antimicrobial effects on a wide range of microorganisms. The present study was conducted to investigate the effect of nanoparticles of zinc oxide, copper oxide, and silicon dioxide on the control of decay caused by fungi A. niger, B. cinerea, and P. expansum on grape fruit of Shahroodi cultivar at room temperature.

 

Materials and Methods

This study aimed to investigate the effects of zinc oxide, copper oxide, and silicon dioxide nanoparticles on the control of grape rot caused by A. niger, B. cinerea, and P. expansum fungi at room temperature. This study was done during 2019-2022 at the laboratories of the Horticultural Sciences Department, Faculty of Agriculture, Ferdowsi University of Mashhad. Samples of A. niger and P. expansum were obtained from the Fungal Collection of the Department of Plant Protection, Ferdowsi University, and the B. cinerea sample (IRAN 2619C) was obtained from the Iranian Research Institute of Plant Protection.

 

Results and Discussion

The results of this research showed that the rotting of grapes that were infected by A. niger and B. cinerea was greatly inhibited by spraying grape bunches with nano-zinc oxide and nano-silicon dioxide. The lowest rate of rotting in grapes infected with P. expansum was also obtained by spraying grape bunches with nano-zinc oxide (0.16) and nano-copper oxide (0.25). Nano-zinc oxide also increased total soluble solids in grape fruits inoculated with A. niger (16.87), although it had no significant effect on grapes inoculated with other fungi. Also, the results showed that the berry and stem of the grapes which were infected with fungi and treated with nano-zinc oxide had a better appearance compared to the fruits treated with other nanoparticles and the control. Furthermore, Fruits infected with A. niger and sprayed with nano-zinc oxide and nano-silicon dioxide had higher phenol contents (147.66 and 143.33 mg GAE.kg-1 fresh fruit, respectively) compared to the samples treated with other nanoparticles and control (106.66 and 101.66 mg GAE.kg-1 fresh fruit, respectively). Anthocyanin content in grapes infected with B. cinerea and treated with zinc oxide nanoparticles was significantly higher (1.85 mg cyanidin 3-glucoside.g-1 fresh fruit) than in controls and samples treated with other nanoparticles. In grape fruits infected with A. niger and P. expansum, antioxidant activity was increased by spraying with nano-zinc oxide (48%), and nano-zinc oxide, and nano-copper oxide (43.33% and 42.33%, respectively). Researchers reported that treatments based on nano-zinc oxide on apple, peach, and strawberry fruits, in addition to reducing fruit rot, maintaining levels of soluble solids and titratable (Li et al., 2011a), maintaining fruit quality, significantly delaying weight loss, firmness, decay percentage, pH and vitamin C content and had positive effects on maintaining higher total anthocyanin concentrations and antioxidant capacity (Sogvar et al., 2016). Nano silicon dioxide in combination with chitosan greatly improved the quality of longan fruit during storage at room temperature (Shi et al., 2013). Chitosan/nano-silica coating effectively reduced internal browning and weight loss of loquat fruit and maintained high levels of total soluble solids, titratable acidity, glucose, and fructose (Song et al., 2016).

 

Conclusion

In general, the results of this study reveal that among the examined metal oxide nanoparticles, zinc oxide nanoparticles have the great capability to control fruit rots caused by A. niger, B. cinerea, and P. expansum fungi. Also, the grape berries and the stems which are sprayed with zinc oxide nanoparticles have a better appearance. In addition, zinc oxide nanoparticles spray led to higher phenolic and anthocyanin content in grapes inoculated with A. niger and B. cinerea compared to samples treated with other metal oxide nanoparticles and controls. In grapes inoculated with A. niger and P. expansum, the highest antioxidant activity was obtained by spraying with nano zinc oxide and spraying with nano zinc oxide and nano copper oxide, respectively.

امامی فر، آریو (1397). ارزیابی تأثیر پوشش خوراکی نانوذرات اکسیدروی بر ویژگی‌های میکروبی، فیزیکوشیمیایی و حسی انگور سیاه طی انبارداری. فناوری‌های جدید در صنعت غذا، 5(4)، 663-680.  https://doi.org/10.22104/jift.2018.2704.1644
خیرخواه فقرا، سحر؛ جعفریان، سارا؛ زمردی، شهین؛ روزبه، لیلا و خسروشاهی اصل، اصغر (1400). تأثیر ضد میکروبی پوشش موسیلاژ دانه ریحان حاوی نانوذرات اکسیدروی بر کیفیت پنیر چدار در طول رسیدن. مجله میکروب‌شناسی مواد غذائی، 2(8)، 88-101.
شیری، نیما و اخلاقی، مصطفی (1398). بررسی خاصیت ضدباکتریایی نانو اکسیدروی و نانواکسیدمس بر برخی عوامل باکتریایی بیماری‌زا در ماهی و تعیین درجه سمیت آن‌ها برای قزل‌آلای رنگین‌کمان. علوم و فنون شیلات، 9(1)، 21-29.
Abd-Elsalam, K.A., Hashim, A.F., Alghuthaymi, M.A., & Said-Galiev, E. (2017). Nanobiotechnological strategies for toxigenic fungi and mycotoxin control. In Nanotechnology in the Agri-Food Industry, Food Preservation. edited by Mihai Grumezescu, A., Academic Press, 337-364. https://doi.org/10.1016/B978-0-12-804303-5.00010-9
Baiano, A., & Terracone, C. (2011). Varietal differences among the phenolic profiles and antioxidant activities of seven table grape cultivars grown in the south of Italy based on chemometrics. Journal of Agricultural and Food Chemistry, 59(18), 9815-9826. https://doi.org/10.1021/jf203003c
Barikloo, H., & Ahmadi, E. (2018). Shelf life extension of strawberry by temperatures conditioning, chitosan coating, modified atmosphere, and clay and silica nanocomposite packaging. Scientia Horticulturae, 240 496-508. https://doi.org/10.1016/j.scienta.2018.06.012
Cappellini, R. (1986). Disorders in table grape shipments to the New York market, 1972-1984. Plant Disease, 70(11), 1075. https://doi.org/10.1094/PD-70-1075
Carvajal-Millán, E., Carvallo, T., Orozco, J., Martínez, M., Tapia, I., Guerrero, V., Rascón-Chu, A., Llamas, J., & Gardea, A. (2001). Polyphenol oxidase activity, color changes, and dehydration in table grape rachis during development and storage as affected by N-(2-chloro-4-pyridyl)-N-phenylurea. Journal of Agricultural and Food Chemistry, 49(2), 946-951. https://doi.org/10.1021/jf000856n
Cioroi, M. (2006). Study on L-ascorbic acid contents from exotic fruits.
Crisosto, C.H., Garner, D., & Crisosto, G. (2002). High carbon dioxide atmospheres affect stored 'Thompson seedless' table grapes. HortScience, 37(7), 1074-1078. https://doi.org/10.21273/HORTSCI.37.7.1074
Droby, S., & Lichter, A. (2007). Post-harvest Botrytis infection: Etiology, development and management. Botrytis: Biology, Pathology and Control. Springer, 349-367.
Dulta, K., Koşarsoy Ağçeli, G., Thakur, A., Singh, S., Chauhan, P., & Chauhan, P. (2022). Development of alginate-chitosan based coating enriched with ZnO nanoparticles for increasing the shelf life of orange fruits (Citrus sinensis L.). Journal of Polymers and the Environment, 30(8), 3293-3306.
El-Moneim, D.A., Dawood, M.F., Moursi, Y.S., Farghaly, A.A., Afifi, M., & Sallam, A. (2021). Positive and negative effects of nanoparticles on agricultural crops. Nanotechnology for Environmental Engineering, 6(2), 21.
Elmer, W., Ma, C., & White, J. (2018). Nanoparticles for plant disease management. Current Opinion in Environmental Science & Health, 6 66-70. https://doi.org/j.coesh.2018.08.002
Emamifar, A. (2018). Evaluation of nano ZnO edible coating effect on microbial, physicochemical and sensorial characteristics of black table grape during storage. Innovative Food Technologies, 5(4), 663-680. https://doi.org/10.22104/jift.2018.2704.1644
U.S. Food and Drug Adminastration. (2011). Food additive status list. http://www.fda.gov/Food/FoodIngredientsPackaging/FoodAdditives/ucm191033.htm#ftnS.12.
Garcia, C.V., Shin, G.H., & Kim, J.T. (2018). Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations. Trends in Food Science & Technology, 82, 21-31. https://doi.org/10.1016/j.tifs.2018.09.021
Guo, J., Fang, W., Lu, H., Zhu, R., Lu, L., Zheng, X., & Yu, T. (2014). Inhibition of green mold disease in mandarins by preventive applications of methyl jasmonate and antagonistic yeast Cryptococcus laurentii. Postharvest Biology and Technology, 88, 72-78. https://doi.org/10.1016/j.postharvbio.2013.09.008
Hashim, A.F., Youssef, K., & Abd-Elsalam, K.A. (2019). Ecofriendly nanomaterials for controlling gray mold of table grapes and maintaining postharvest quality. European Journal of Plant Pathology, 154, 377-388.
He, L., Liu, Y., Mustapha, A., & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166(3), 207-215. https://doi.org/10.1016/j.micres. 2010.03.003
Kheirkhah Foghara, S., Jafarian, S., Zomorodi, S., Roozbeh, L., Khosrowshahi Asl, A. (2021). The antimicrobial effect of basil seed mucilage-ZnO nanocomposite coating on the quality of cheddar cheese during ripening. Journal of Food Microbiology, 2(8), 88-101 (in Persian).
Krikorian, R., Boespflug, E.L., Fleck, D.E., Stein, A.L., Wightman, J.D., Shidler, M.D., & Sadat-Hossieny, S. (2012). Concord grape juice supplementation and neurocognitive function in human aging. Journal of Agricultural and Food Chemistry, 60(23), 5736-5742. https://doi.org/10.1021/jf300277g
Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., & Buszewski, B. (2017). Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Advances in Colloid and Interface Science, 249 37-52. https://doi.org/10.1016/j.cis.2017.07.033
Li, D., Li, L., Luo, Z., Lu, H., & Yue, Y. (2017). Effect of nano-ZnO-packaging on chilling tolerance and pectin metabolism of peaches during cold storage. Scientia Horticulturae, 225 128-133. https://doi.org/10.1016/j.scienta.2017.07.003
L, J., Zhang, G., Zhang, Z., Zhang, Y., & Zhang, D. (2023). Synergistic microbial inhibition and quality preservation for grapes through high-voltage electric field cold plasma and nano-ZnO antimicrobial film treatment. Foods, 12(23), 4234.
Li, X., Li, W., Jiang, Y., Ding, Y., Yun, J., Tang, Y., & Zhang, P. (2011a). Effect of nano‐ZnO‐coated active packaging on quality of fresh‐cut ‘Fuji’apple. International Journal of Food Science & Technology, 46(9), 1947-1955. https://doi.org/10.1111/j.1365-2621.2011.02706.x
Li, X.H., Li, W.L., Xing, Y.G., Jiang, Y.H., Ding, Y.L., & Zhang, P.P. (2011b). Effects of nano-ZnO power-coated PVC film on the physiological properties and microbiological changes of fresh-cut" Fuji" apple. Advanced Materials Research, 152 450-453. https://doi.org/10.4028/www.scientific.net/AMR.152-153.450
Llorens, A., Lloret, E., Picouet, P.A., Trbojevich, R., & Fernandez, A. (2012). Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends in Food Science & Technology, 24(1), 19-29. https://doi.org/10.1016/j.tifs.2011.10.001
Martínez-Romero, D., Guillén, F., Valverde, J.M., Bailén, G., Zapata, P., Serrano, M., Castillo, S., & Valero, D. (2007). Influence of carvacrol on survival of Botrytis cinerea inoculated in table grapes. International Journal of Food Microbiology, 115(2), 144-148. https://doi.org/10.1016/j.ijfoodmicro.2006.10.015
Melgarejo-Flores, B., Ortega-Ramírez, L., Silva-Espinoza, B., González-Aguilar, G., Miranda, M., & Ayala-Zavala, J. (2013). Antifungal protection and antioxidant enhancement of table grapes treated with emulsions, vapors, and coatings of cinnamon leaf oil. Postharvest Biology and Technology, 86 321-328. https://doi.org/10.1016/j.postharvbio.2013.07.027
Meng, X., Li, B., Liu, J., & Tian, S. (2008). Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chemistry, 106(2), 501-508. https://doi.org/10.1016/j.foodchem.2007.06.012
Moyer, R.A., Hummer, K.E., Finn, C.E., Frei, B., & Wrolstad, R.E. (2002). Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. Journal of Agricultural and Food Chemistry, 50(3), 519-525. https://doi.org/10.1021/jf011062r
Palou, L., Serrano, M., Martínez-Romero, D., & Valero, D. (2010). New approaches for postharvest quality retention of table grapes. Fresh Produce, 4(1), 103-110.
Pan, C., & Du, X. (2017). A study on the effects of the best combination of copper, zinc, iron, and manganese on the relationship of lettuce resistance to Botrytis cinerea and its antioxidant system. Emirates Journal of Food and Agriculture, 330-338. https://doi.org/10.9755/ejfa.2016-07-840
Peretto, G., Du, W.-X., Avena-Bustillos, R.J., De J. Berrios, J., Sambo, P., & McHugh, T.H. (2017). Electrostatic and conventional spraying of alginate-based edible coating with natural antimicrobials for preserving fresh strawberry quality. Food and Bioprocess Technology, 10 165-174. https://doi.org/10.1007/s11947-016-1808-9
Rajwade, J.M., Chikte, R., & Paknikar, K. (2020). Nanomaterials: New weapons in a crusade against phytopathogens. Applied Microbiology and Biotechnology, 104 1437-1461.
Rana, R.A., Siddiqui, M.N., Skalicky, M., Brestic, M., Hossain, A., Kayesh, E., Popov, M., Hejnak, V., Gupta, D.R., & Mahmud, N.U. (2021). Prospects of nanotechnology in improving the productivity and quality of horticultural crops. Horticulturae, 7(10), 332.
Ruffo Roberto, S., Youssef, K., Hashim, A.F., & Ippolito, A. (2019). Nanomaterials as alternative control means against postharvest diseases in fruit crops. Nanomaterials, 9(12), 1752.
Sardella, D., Gatt, R., & Valdramidis, V.P. (2019). Metal nanoparticles for controlling fungal proliferation: quantitative analysis and applications. Current Opinion in Food Science, 30, 49-59.
Sánchez‐Moreno, C., Larrauri, J.A., & Saura‐Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76(2), 270-276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9
Shen, Y., & Yang, H. (2017). Effect of preharvest chitosan-g-salicylic acid treatment on postharvest table grape quality, shelf life, and resistance to Botrytis cinerea-induced spoilage. Scientia Horticulturae, 224 367-373.
Shi, S., Wang, W., Liu, L., Wu, S., Wei, Y., & Li, W. (2013). Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. Journal of Food Engineering, 118(1), 125-131. https://doi.org/10.1016/j.jfoodeng.2013.03.029
Shiry, N., & Akhlaghi, M. 2020. Assessment of nano zinc oxide and nano copper oxides’ bactericidal effect on some bacterial pathogens in fish and determination of their toxicity degree in rainbow trout. Journal of Fisheries Science and Technology, 9(1), 21-29 (in Persian).
Slinkard, K., & Singleton, V.L. (1977). Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49-55. https://doi.org/10.5344/ajev.1977.28.1.49
Sogvar, O.B., Saba, M.K., Emamifar, A., & Hallaj, R. (2016). Influence of nano-ZnO on microbial growth, bioactive content and postharvest quality of strawberries during storage. Innovative Food Science & Emerging Technologies, 35 168-176. https://doi.org/10.1016/j.ifset.2016.05.005
Song, H., Yuan, W., Jin, P., Wang, W., Wang, X., Yang, L., & Zhang, Y. (2016). Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage. Postharvest Biology and Technology, 119 41-48. https://doi.org/10.1016/j.postharvbio.2016.04.015
Sonker, N., Pandey, A.K., & Singh, P. (2016). Strategies to control post-harvest diseases of table grape: A review. Journal of Wine Research, 27(2), 105-122. https://doi.org/10.1080/09571264.2016.1151407
Sortino, G., Farina, V., Gallotta, A., & Allegra, A. (2016). Effect of low SO2 postharvest treatment on quality parameters of 'Italia' table grape during prolonged cold storage. VIII International Postharvest Symposium: Enhancing Supply Chain and Consumer Benefits-Ethical and Technological Issues 1194.
Stoimenov, P.K., Klinger, R.L., Marchin, G.L., & Klabunde, K.J. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18(17), 6679-6686. https://doi.org/10.1021/la0202374
Tournas, V., & Katsoudas, E. (2005). Mould and yeast flora in fresh berries, grapes and citrus fruits. International journal of food microbiology, 105(1), 11-17. https://doi.org/10.1016/j.ijfoodmicro.2005.05.002
Upadhyay, T.K., Kumar, V.V., Sharangi, A.B., Upadhye, V.J., Khan, F., Pandey, P., Kamal, M.A., Baba, A.Y., & Hakeem, K.R. (2022). Nanotechnology-based advancements in postharvest management of horticultural crops. Phyton-International Journal of Wxpeimental Botany.
Wang, H., Cao, G., & Prior, R.L. (1996). Total antioxidant capacity of fruits. Journal of Agricultural and Food Chemistry, 44(3), 701-705. https://doi.org/10.1021/jf950579y
Xu, W.-T., Huang, K.-L., Guo, F., Qu, W., Yang, J.-J., Liang, Z.-H., & Luo, Y.-B. (2007). Postharvest grapefruit seed extract and chitosan treatments of table grapes to control Botrytis cinerea. Postharvest Biology and Technology, 46(1), 86-94. https://doi.org/10.1016/j.postharvbio.2007.03.019
Yang, F., Li, H., Li, F., Xin, Z., Zhao, L., Zheng, Y., & Hu, Q. (2010). Effect of nano‐packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. cv Fengxiang) during storage at 4 °C. Journal of Food Science, 75(3), C236-C240. https://doi.org/10.1111/j.1750-3841.2010.01520.x
Youssef, K., de Oliveira, A.G., Tischer, C.A., Hussain, I., & Roberto, S.R. (2019). Synergistic effect of a novel chitosan/silica nanocomposites-based formulation against gray mold of table grapes and its possible mode of action. International Journal of Biological Macromolecules, 141, 247-258.
Youssef, K., & Roberto, S.R. (2014). Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of ‘Italia’table grapes. Postharvest Biology and Technology, 87, 95-102. https://doi.org/10.1016/j.postharvbio.2013.08.011
Youssef, K., & Roberto, S.R. (2021). Chitosan/silica nanocomposite-based formulation alleviated gray mold through stimulation of the antioxidant system in table grapes. International Journal of Biological Macromolecules, 168, 242-250.
Yu, Y., Zhang, S., Ren, Y., Li, H., Zhang, X., & Di, J. (2012). Jujube preservation using chitosan film with nano-silicon dioxide. Journal of Food Engineering, 113(3), 408-411. https://doi.org/10.1016/j.jfoodeng.2012.06.021
Zhang, R., Wang, X., Li, L., Cheng, M., & Zhang, L. (2019). Optimization of konjac glucomannan/carrageenan/nano-SiO2 coatings for extending the shelf-life of Agaricus bisporus. International Journal of Biological Macromolecules, 122, 857-865. https://doi.org/10.1016/j.ijbiomac.2018.10.165