امامی فر، آریو (1397). ارزیابی تأثیر پوشش خوراکی نانوذرات اکسیدروی بر ویژگیهای میکروبی، فیزیکوشیمیایی و حسی انگور سیاه طی انبارداری
. فناوریهای جدید در صنعت غذا، 5(4)، 663-680.
https://doi.org/10.22104/jift.2018.2704.1644
خیرخواه فقرا، سحر؛ جعفریان، سارا؛ زمردی، شهین؛ روزبه، لیلا و خسروشاهی اصل، اصغر (1400). تأثیر ضد میکروبی پوشش موسیلاژ دانه ریحان حاوی نانوذرات اکسیدروی بر کیفیت پنیر چدار در طول رسیدن. مجله میکروبشناسی مواد غذائی، 2(8)، 88-101.
شیری، نیما و اخلاقی، مصطفی (1398). بررسی خاصیت ضدباکتریایی نانو اکسیدروی و نانواکسیدمس بر برخی عوامل باکتریایی بیماریزا در ماهی و تعیین درجه سمیت آنها برای قزلآلای رنگینکمان. علوم و فنون شیلات، 9(1)، 21-29.
Abd-Elsalam, K.A., Hashim, A.F., Alghuthaymi, M.A., & Said-Galiev, E. (2017). Nanobiotechnological strategies for toxigenic fungi and mycotoxin control. In
Nanotechnology in the Agri-Food Industry, Food Preservation. edited by Mihai Grumezescu, A., Academic Press
, 337-364.
https://doi.org/10.1016/B978-0-12-804303-5.00010-9
Baiano, A., & Terracone, C. (2011). Varietal differences among the phenolic profiles and antioxidant activities of seven table grape cultivars grown in the south of Italy based on chemometrics.
Journal of Agricultural and Food Chemistry, 59(18)
, 9815-9826.
https://doi.org/10.1021/jf203003c
Barikloo, H., & Ahmadi, E. (2018). Shelf life extension of strawberry by temperatures conditioning, chitosan coating, modified atmosphere, and clay and silica nanocomposite packaging.
Scientia Horticulturae, 240 496-508.
https://doi.org/10.1016/j.scienta.2018.06.012
Carvajal-Millán, E., Carvallo, T., Orozco, J., Martínez, M., Tapia, I., Guerrero, V., Rascón-Chu, A., Llamas, J., & Gardea, A. (2001). Polyphenol oxidase activity, color changes, and dehydration in table grape rachis during development and storage as affected by N-(2-chloro-4-pyridyl)-N-phenylurea.
Journal of Agricultural and Food Chemistry, 49(2)
, 946-951.
https://doi.org/10.1021/jf000856n
Cioroi, M. (2006). Study on L-ascorbic acid contents from exotic fruits.
Droby, S., & Lichter, A. (2007). Post-harvest Botrytis infection: Etiology, development and management. Botrytis: Biology, Pathology and Control. Springer, 349-367.
Dulta, K., Koşarsoy Ağçeli, G., Thakur, A., Singh, S., Chauhan, P., & Chauhan, P. (2022). Development of alginate-chitosan based coating enriched with ZnO nanoparticles for increasing the shelf life of orange fruits (Citrus sinensis L.). Journal of Polymers and the Environment, 30(8), 3293-3306.
El-Moneim, D.A., Dawood, M.F., Moursi, Y.S., Farghaly, A.A., Afifi, M., & Sallam, A. (2021). Positive and negative effects of nanoparticles on agricultural crops. Nanotechnology for Environmental Engineering, 6(2), 21.
Elmer, W., Ma, C., & White, J. (2018). Nanoparticles for plant disease management.
Current Opinion in Environmental Science & Health, 6 66-70.
https://doi.org/j.coesh.2018.08.002
Emamifar, A. (2018). Evaluation of nano ZnO edible coating effect on microbial, physicochemical and sensorial characteristics of black table grape during storage.
Innovative Food Technologies,
5(4), 663-680.
https://doi.org/10.22104/jift.2018.2704.1644
Garcia, C.V., Shin, G.H., & Kim, J.T. (2018). Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations.
Trends in Food Science & Technology, 82, 21-31.
https://doi.org/10.1016/j.tifs.2018.09.021
Guo, J., Fang, W., Lu, H., Zhu, R., Lu, L., Zheng, X., & Yu, T. (2014). Inhibition of green mold disease in mandarins by preventive applications of methyl jasmonate and antagonistic yeast
Cryptococcus laurentii.
Postharvest Biology and Technology, 88, 72-78.
https://doi.org/10.1016/j.postharvbio.2013.09.008
Hashim, A.F., Youssef, K., & Abd-Elsalam, K.A. (2019). Ecofriendly nanomaterials for controlling gray mold of table grapes and maintaining postharvest quality. European Journal of Plant Pathology, 154, 377-388.
He, L., Liu, Y., Mustapha, A., & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against
Botrytis cinerea and
Penicillium expansum.
Microbiological Research, 166(3)
, 207-215.
https://doi.org/10.1016/j.micres. 2010.03.003
Kheirkhah Foghara, S., Jafarian, S., Zomorodi, S., Roozbeh, L., Khosrowshahi Asl, A. (2021). The antimicrobial effect of basil seed mucilage-ZnO nanocomposite coating on the quality of cheddar cheese during ripening. Journal of Food Microbiology, 2(8), 88-101 (in Persian).
Krikorian, R., Boespflug, E.L., Fleck, D.E., Stein, A.L., Wightman, J.D., Shidler, M.D., & Sadat-Hossieny, S. (2012). Concord grape juice supplementation and neurocognitive function in human aging.
Journal of Agricultural and Food Chemistry, 60(23)
, 5736-5742.
https://doi.org/10.1021/jf300277g
Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., & Buszewski, B. (2017). Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism.
Advances in Colloid and Interface Science, 249 37-52.
https://doi.org/10.1016/j.cis.2017.07.033
Li, D., Li, L., Luo, Z., Lu, H., & Yue, Y. (2017). Effect of nano-ZnO-packaging on chilling tolerance and pectin metabolism of peaches during cold storage.
Scientia Horticulturae, 225 128-133.
https://doi.org/10.1016/j.scienta.2017.07.003
L, J., Zhang, G., Zhang, Z., Zhang, Y., & Zhang, D. (2023). Synergistic microbial inhibition and quality preservation for grapes through high-voltage electric field cold plasma and nano-ZnO antimicrobial film treatment. Foods, 12(23), 4234.
Li, X., Li, W., Jiang, Y., Ding, Y., Yun, J., Tang, Y., & Zhang, P. (2011a). Effect of nano‐ZnO‐coated active packaging on quality of fresh‐cut ‘Fuji’apple.
International Journal of Food Science & Technology, 46(9)
, 1947-1955.
https://doi.org/10.1111/j.1365-2621.2011.02706.x
Li, X.H., Li, W.L., Xing, Y.G., Jiang, Y.H., Ding, Y.L., & Zhang, P.P. (2011b). Effects of nano-ZnO power-coated PVC film on the physiological properties and microbiological changes of fresh-cut" Fuji" apple.
Advanced Materials Research, 152 450-453.
https://doi.org/10.4028/www.scientific.net/AMR.152-153.450
Llorens, A., Lloret, E., Picouet, P.A., Trbojevich, R., & Fernandez, A. (2012). Metallic-based micro and nanocomposites in food contact materials and active food packaging.
Trends in Food Science & Technology, 24(1)
, 19-29.
https://doi.org/10.1016/j.tifs.2011.10.001
Martínez-Romero, D., Guillén, F., Valverde, J.M., Bailén, G., Zapata, P., Serrano, M., Castillo, S., & Valero, D. (2007). Influence of carvacrol on survival of
Botrytis cinerea inoculated in table grapes.
International Journal of Food Microbiology, 115(2)
, 144-148.
https://doi.org/10.1016/j.ijfoodmicro.2006.10.015
Melgarejo-Flores, B., Ortega-Ramírez, L., Silva-Espinoza, B., González-Aguilar, G., Miranda, M., & Ayala-Zavala, J. (2013). Antifungal protection and antioxidant enhancement of table grapes treated with emulsions, vapors, and coatings of cinnamon leaf oil.
Postharvest Biology and Technology, 86 321-328.
https://doi.org/10.1016/j.postharvbio.2013.07.027
Meng, X., Li, B., Liu, J., & Tian, S. (2008). Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage.
Food Chemistry, 106(2)
, 501-508.
https://doi.org/10.1016/j.foodchem.2007.06.012
Moyer, R.A., Hummer, K.E., Finn, C.E., Frei, B., & Wrolstad, R.E. (2002). Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes.
Journal of Agricultural and Food Chemistry, 50(3)
, 519-525.
https://doi.org/10.1021/jf011062r
Palou, L., Serrano, M., Martínez-Romero, D., & Valero, D. (2010). New approaches for postharvest quality retention of table grapes. Fresh Produce, 4(1), 103-110.
Pan, C., & Du, X. (2017). A study on the effects of the best combination of copper, zinc, iron, and manganese on the relationship of lettuce resistance to
Botrytis cinerea and its antioxidant system.
Emirates Journal of Food and Agriculture, 330-338.
https://doi.org/10.9755/ejfa.2016-07-840
Peretto, G., Du, W.-X., Avena-Bustillos, R.J., De J. Berrios, J., Sambo, P., & McHugh, T.H. (2017). Electrostatic and conventional spraying of alginate-based edible coating with natural antimicrobials for preserving fresh strawberry quality.
Food and Bioprocess Technology, 10 165-174.
https://doi.org/10.1007/s11947-016-1808-9
Rajwade, J.M., Chikte, R., & Paknikar, K. (2020). Nanomaterials: New weapons in a crusade against phytopathogens. Applied Microbiology and Biotechnology, 104 1437-1461.
Rana, R.A., Siddiqui, M.N., Skalicky, M., Brestic, M., Hossain, A., Kayesh, E., Popov, M., Hejnak, V., Gupta, D.R., & Mahmud, N.U. (2021). Prospects of nanotechnology in improving the productivity and quality of horticultural crops. Horticulturae, 7(10), 332.
Ruffo Roberto, S., Youssef, K., Hashim, A.F., & Ippolito, A. (2019). Nanomaterials as alternative control means against postharvest diseases in fruit crops. Nanomaterials, 9(12), 1752.
Sardella, D., Gatt, R., & Valdramidis, V.P. (2019). Metal nanoparticles for controlling fungal proliferation: quantitative analysis and applications. Current Opinion in Food Science, 30, 49-59.
Shen, Y., & Yang, H. (2017). Effect of preharvest chitosan-g-salicylic acid treatment on postharvest table grape quality, shelf life, and resistance to Botrytis cinerea-induced spoilage. Scientia Horticulturae, 224 367-373.
Shi, S., Wang, W., Liu, L., Wu, S., Wei, Y., & Li, W. (2013). Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature.
Journal of Food Engineering, 118(1)
, 125-131.
https://doi.org/10.1016/j.jfoodeng.2013.03.029
Shiry, N., & Akhlaghi, M. 2020. Assessment of nano zinc oxide and nano copper oxides’ bactericidal effect on some bacterial pathogens in fish and determination of their toxicity degree in rainbow trout. Journal of Fisheries Science and Technology, 9(1), 21-29 (in Persian).
Slinkard, K., & Singleton, V.L. (1977). Total phenol analysis: automation and comparison with manual methods.
American Journal of Enology and Viticulture, 28(1)
, 49-55.
https://doi.org/10.5344/ajev.1977.28.1.49
Sogvar, O.B., Saba, M.K., Emamifar, A., & Hallaj, R. (2016). Influence of nano-ZnO on microbial growth, bioactive content and postharvest quality of strawberries during storage.
Innovative Food Science & Emerging Technologies, 35 168-176.
https://doi.org/10.1016/j.ifset.2016.05.005
Song, H., Yuan, W., Jin, P., Wang, W., Wang, X., Yang, L., & Zhang, Y. (2016). Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage.
Postharvest Biology and Technology, 119 41-48.
https://doi.org/10.1016/j.postharvbio.2016.04.015
Sortino, G., Farina, V., Gallotta, A., & Allegra, A. (2016). Effect of low SO2 postharvest treatment on quality parameters of 'Italia' table grape during prolonged cold storage. VIII International Postharvest Symposium: Enhancing Supply Chain and Consumer Benefits-Ethical and Technological Issues 1194.
Stoimenov, P.K., Klinger, R.L., Marchin, G.L., & Klabunde, K.J. (2002). Metal oxide nanoparticles as bactericidal agents.
Langmuir, 18(17)
, 6679-6686.
https://doi.org/10.1021/la0202374
Upadhyay, T.K., Kumar, V.V., Sharangi, A.B., Upadhye, V.J., Khan, F., Pandey, P., Kamal, M.A., Baba, A.Y., & Hakeem, K.R. (2022). Nanotechnology-based advancements in postharvest management of horticultural crops. Phyton-International Journal of Wxpeimental Botany.
Wang, H., Cao, G., & Prior, R.L. (1996). Total antioxidant capacity of fruits.
Journal of Agricultural and Food Chemistry, 44(3)
, 701-705.
https://doi.org/10.1021/jf950579y
Xu, W.-T., Huang, K.-L., Guo, F., Qu, W., Yang, J.-J., Liang, Z.-H., & Luo, Y.-B. (2007). Postharvest grapefruit seed extract and chitosan treatments of table grapes to control
Botrytis cinerea.
Postharvest Biology and Technology, 46(1)
, 86-94.
https://doi.org/10.1016/j.postharvbio.2007.03.019
Yang, F., Li, H., Li, F., Xin, Z., Zhao, L., Zheng, Y., & Hu, Q. (2010). Effect of nano‐packing on preservation quality of fresh strawberry (
Fragaria ananassa Duch. cv Fengxiang) during storage at 4 °C.
Journal of Food Science, 75(3), C236-C240.
https://doi.org/10.1111/j.1750-3841.2010.01520.x
Youssef, K., de Oliveira, A.G., Tischer, C.A., Hussain, I., & Roberto, S.R. (2019). Synergistic effect of a novel chitosan/silica nanocomposites-based formulation against gray mold of table grapes and its possible mode of action. International Journal of Biological Macromolecules, 141, 247-258.
Youssef, K., & Roberto, S.R. (2014). Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of ‘Italia’table grapes.
Postharvest Biology and Technology, 87, 95-102.
https://doi.org/10.1016/j.postharvbio.2013.08.011
Youssef, K., & Roberto, S.R. (2021). Chitosan/silica nanocomposite-based formulation alleviated gray mold through stimulation of the antioxidant system in table grapes. International Journal of Biological Macromolecules, 168, 242-250.
Yu, Y., Zhang, S., Ren, Y., Li, H., Zhang, X., & Di, J. (2012). Jujube preservation using chitosan film with nano-silicon dioxide.
Journal of Food Engineering, 113(3)
, 408-411.
https://doi.org/10.1016/j.jfoodeng.2012.06.021
Zhang, R., Wang, X., Li, L., Cheng, M., & Zhang, L. (2019). Optimization of konjac glucomannan/carrageenan/nano-SiO
2 coatings for extending the shelf-life of
Agaricus bisporus.
International Journal of Biological Macromolecules, 122, 857-865.
https://doi.org/10.1016/j.ijbiomac.2018.10.165