c3518cb17d976b8

تاثیر داروی رزوراترول (Resveratrol) در القای مقاومت دو رقم ترمه و کاپتین گوجه‌فرنگی به پژمردگی فوزاریومی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زیست شناسی، دانشکده علوم، دانشگاه یزد، یزد، ایران

2 گروه زیست شناسی دانشکده علوم دانشگاه یزد، یزد، ایران

3 گروه احیاء و مدیریت مناطق خشک و بیابانی، دانشکده منابع طبیعی و کویر شناسی دانشگاه یزد، یزد، ایران.

4 گروه احیاء و مدیریت مناطق خشک و بیابانی، دانشکده منابع طبیعی و کویر شناسی دانشگاه یزد، یزد، ایران

چکیده

کنترل بیولوژیکی بیماری‌های گیاهی با فیتوهورمون‌ها یا متابولیت‌های ثانویه گیاهی یکی از اهداف نیل به کشاورزی پایدار می‌باشد. در این تحقیق تاثیر داروی رزوراترول در القای مقاومت دو رقم گوجه فرنگی به پژمردگی فوزاریومی در شرایط گلخانه مورد بررسی قرار گرفت. از رقم‌های تجاری کاپتین و ترمه و همچنین گونه  fsp. lycopersici Fusarium oxysporum در قالب طرح بلوک‌های کاملا تصادفی با چهار تکرار استفاده گردید. گیاهچه‌ها دو مرتبه با غلظت‌های 100 و 150 میکروگرم/میلی‌لیتر از داروی رزوراترول در مرحله 6-4 برگی محلول پاشی شدند. وزن تر و خشک ریشه و ساقه و ارتفاع اندام‌های هوایی گیاهان به عنوان ویژگی‌های زراعی، و میزان تغییر در فعالیت برخی آنزیم‌های دفاعی مانند کاتالاز، پراکسیداز، پلی‌فنل ‌اکسیداز و فنل کل، و بیان برخی ژن‌های دخیل در مقاومت و پاسخ‌های دفاعی مورد بررسی قرار گرفتند. نتایج آزمایش اختلاف معنی‌دار رشدی بین تمام تیمارها با شاهد به ویژه در تیمار 150 میکروگرم/میلی‌لیتر از رزوراترول را نشان داد. به طور متوسط، بیشترین میزان تغییرات آنزیمی در رقم ترمه آلوده به بیماری مشاهده شد. بررسی بیان ژن‌ها نشان داد که بیشترین میزان بیان ژن مربوط به ژن Npr1 در رقم کاپتین بود. نتایج این تحقیق نشان می دهد که داروی رزوراترول می‌تواند به عنوان یک القاکننده مقاومت به تنش بیماری در گیاه مورد استفاده قرار گیرد هر چند در مقایسه با القاگرهای مقاومت متداول دیگر در بیماری‌های گیاهی، مانند اسید سالیسیلیک و جاسمونیک اسید، اثر کمتری دارد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of Resveratrol drug on induced resistance of two Captain and Termeh tomato cultivars against fusarium wiltting disease

نویسندگان [English]

  • Seyed Kazem Sabbagh 1
  • Mohammad Reza Sarafaraz 2
  • Seyed Ebrahim Seifati 3
  • abbas Kafiri 4
1 Department of Biology,; Faculty of Science,Yazd University, yazd, Iran
2 Department of Biology, Faculty of Science, Yazd University, Yazd, Iran.
3 Department of Department of Arid Land and Desert Management, Faculty of Natural Resources of Desert, Y Yazd University, Yazd, Iran
4 Department of Department of Arid Land and Desert Management, Faculty of Natural Resources of Desert, Yazd University, Yazd, Iran
چکیده [English]

Biological control of plant disease using phytohormones and secondary metabolites is the goal of sustainable agriculture. In this research, the effect of Resveratrol drug on inducing resistance in two tomato cultivars against fusarium wilting disease in greenhouse conditions was investigated. Commercial Captain and Termeh cultivars and Fusrium oxysporum fsp. lycopersici fungus were used in a randomized block design with four repetitions. Two 100 and 150 µg/mL concentrations of Resveratrol at 3-4 leaf stage were applied for this test. Some of the growth traits such as root dry and fresh weight and aerial parts height, and also the change of some defense enzyme activity such as catalase, peroxidase, polyphenoloxidase, and total phenol, and expression of some genes involved in plant resistance mechanisms were measured. The results showed a significant difference in growth parameters between all treatments in comparison to the control, especially at 150 µg/mL concentration of resveratrol. However, the highest rate change of enzyme activity was observed in infected Termeh cv. The high gene expression was concerned with Npr1 in the Captain cv. The results of this research show that resveratrol drugs could be used as a resistance inducer in plant disease stress. However, in comparison to current resistance inducers in plant pathology salicylic acid and jasmonic acid, resveratrol has less efficiency.

کلیدواژه‌ها [English]

  • Antioxidants enzymes
  • Gene expression
  • Fungi
  • Induced resistance
  • Plant disease

Extended Abstract

Introduction

The tomato (Solanum lycopersicum) is an annual plant belonging to the Solanaceae family. The fungus Fusarium oxysporum fsp. Lycopersici is the most common wilt disease in tomato plant which cause a graet economic losses, especially in greenhouse conditions. Symptoms of tomato wilting disease intiate with small spots of wilting. The first symptoms appear when fruit are ripping. Leaves of infected plants show yellowing spots on one side of the leaves fowllwed by wilting. Chemical pesticides are the first strategy for disease control, but despite their benefits and effectiveness in crop production and disease management, the use of pesticides poses significant hazards to the environment and public health. Therefore, the best defense is to induce acquired resistant using biological agentsvia integrated pest management. Biological control of plant diseases using phytohormones and secondary metabolites is the goal of sustainable agriculture. In this research, the effects of Resveratrol as a drug base on phytohormones property on inducing resistance in two tomato cultivars against fusarium wilting disease in greenhouse conditions was investigated.

 

Material Methods

Two tomato cultivars, Captain and Termeh, were used in this research. The tomato seeds were surface sterilized with 1% sodium hypochlorite solution for three minutes to produce seedling plant. The Seedlings were carefully transfered into 18 cm pots. Fusrium oxysporum fsp. lycopersici funguswas used for pathogenicity test in a randomized block design with four repetitions. The plants were sprayed with 100 and 150 µM concentrations of Resveratrol twice at 4-6 leaf stage. Some agricultural traits and also the activity of some defense enzymes, such as catalase, peroxidase, polyphenoloxidase, and total phenol were assayed. The expression levels of three eds1, npr1, and pds genes involved in plant resistance were analyzed using qRT-PCR methods. Acquired data were analyzed by SAS software and gene expression analysis was conducted using the comparative ∆∆ct method.

 

Results and Discussion

The comparison of the effect of resveratrol on the growth parameters in two tomato cultivars showed that resveratrol significantly increased measured growth parameters at a statistical level of 5% compared to control plants. The results showed that resveratrol had a conciderable effect on stem height than on other parameters, and the Termeh cultivar was more affected by resveratrol than the Captain cultivar. The lowest rate of changes in the root characteristics was observed in the dry weight of the aerial parts compared to control plants. Among the measured enzymes, the highest increase was observed in catalase enzyme at 100µg/mL concentration of resveratrol 48 h after plant infection. Considering the rapid role of antioxidant enzymes such as catalase and peroxidase in scavenging free radicals, such results are expected. Similar studies with spermidine compounds had shown an increase in enzyme activity level, but the amount of each enzyme activity varied according to the variety and time perion after inoculation. Under tested conditions and considering the type of inducer agent, these results are expected. However, in compared to spermidine compounds, resveratrol seems to have a lower effect on inducing resistance.

Although the expression levels of Npr1 and Pds genes in both infected varieties treated with resveratrol were elevated compared to the control plant while Npr1 gene expression was higher than other genes. The high expression level of all the tested genes in the captain cultivar compared to the termeh cultivar, indicates that the captain cultivar was more affected by resveratrol than termeh cultivar to resistance againts the disease.

 

Conclusion 

    Biocontrol strategies, in biotic and abiotic conditions, can be effective against different pathogens by preparing cultural conditions. Several factors influence their effectiveness, including the introduction of biological agents on a commercial scale, such as cost, efficacy, and reliability. Cultural practices such as good sanitation, soil condition, nutrition, and host resistance significantly contribute to controlling many plant diseases. Therefore, for increase of effeciencyof bio-control agents on plant disease, agronomic practices must be sufficient. The results of this research showed that resveratrol can be used as a resistance inducer in disease stress. However, in comparison to other resistance inducers such as salicylic acid and jasmonic acid, Resveratrol is less efficient in plant pathology.

صباغ، سید کاظم؛ گلستانی، منصور؛ سرافراز اردکانی، محند رضا؛ عباسی، اسماعیل و طاهری، مرضیه (1398). فیتوهورمون اسپرمیدین و القای مقاومت به دو رقم گوجه فرنگی ترمه و کاپتین به بیماری پژمردگی فوزاریومی ایجاد شده به وسیله قارچ Fusarium oxysporum f. sp. lycopersici. مجله حفاظت از گیاهان، 51(2)، 279-313.
میررحیمی، سید محمدرضا؛ صباغ، سید کاظم؛ سیفتی، سید ابراهیم؛ کیخاه صابر، مجتبی و طاهری، عبدالحسین (1402). مقایسه‌ تأثیر فیتوهورمون GR24 و دو گونه قارچی به تنهایی و در ترکیب با هم در افزایش مقاومت دو رقم گوجه‌فرنگی نسبت به بیماری پژمردگی فوزاریومی. پژوهش های کاربردی در گیاهپزشکی، 2(1)، 43-56.
REFERENCES
Backer, R., Naidoo, S., & Van den Berg, N. (2019). The Nnoexpressor of pathogenesis-related genesNPR1) and related family: mechanistic insights in plant disease resistance. Frontiers in Plant Science, 10, 430215.
Basra, A. (2000). Plant growth regulators in agriculture and horticulture: their role and commercial uses. CRC Press, United State of America.
Bolok Yazdi, H. R., Sabbagh, S. K., Mazaheri, M., Salari, M., & Moshtaghioun, S. M. (2018). Virus-induced gene silencing for functional analysis of eds1 gene in tomato infected with Ralstonia solanacearum. Zemdirbyste-Agriculture, 4; 357-362Celep, E., Seven, M., Akyüz, S., İnan, Y., & Yesilada, E. (2019). Influence of extraction method on enzyme inhibition, phenolic profile and antioxidant capacity of Sideritis trojana Bornm. South African Journal of Botany, 121(1.) 360-365.
Fagerstedt, K. V., Kukkola, E. M., Koistinen, V. V., Takahashi, J., & Marjamaa, K. (2010). Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce. Journal of Integrative Plant Biology, 52(2), 186-194.
García-Fraile, P., Menéndez, E., Celador-Lera, L., Díez-Méndez, A., Jiménez-Gómez, A., Marcos-García, M., Cruz-González, X. A., Martínez-Hidalgo, P., Mateos, P. F., & Rivas, R. (2017). Bacterial probiotics: a truly green revolution. In Probiotics and plant health (pp. 131-162). University of Salamanca, Spain.
Gomes, M. P., Kitamura, R. S. A., Marques, R. Z., Barbato, M. L., & Zámocký, M. (2022). The role of H2O2-scavenging enzymes (ascorbate peroxidase and catalase) in the tolerance of Lemna minor to antibiotics: implications for phytoremediation. Antioxidants, 11(1), 151.
Hernández-Aparicio, F., Lisón, P., Rodrigo, I., Bellés, J. M., & López-Gresa, M. P. (2021). Signaling in the tomato immunity against Fusarium oxysporum. Molecules, 26(7), 1818.
Hu, G., DeHart, A. K., Li, Y., Ustach, C., Handley, V., Navarre, R., Hwang, C. F., Aegerter, B. J., Williamson, V. M., & Baker, B. (2005). EDS1 in tomato is required for resistance mediated by TIR‐class R genes and the receptor‐like R gene Ve. The Plant Journal, 42(3), 376-391.
Kang, J. E., Yoo, N., Jeon, B. J., Kim, B. S., & Chung, E.-H. (2022). Resveratrol Oligomers, Plant-Produced Natural Products With Anti-virulence and Plant Immune-Priming Roles. Frontiers in Plant Science, 13(??), 885625.
Lahlali, R., Ezrari, S., Radouane, N., Kenfaoui, J., Esmaeel, Q., El Hamss, H., Belabess, Z., & Barka, E. A. (2022). Biological control of plant pathogens: A global perspective. Microorganisms, 10(3), 596.
Mirrahimi, S. R., Pirnia, M., Sabbagh, S. K., Seifati, S. E., Keikha, S. M., & Taheri, A. (2023). Comparative effect of gr24 phytohormone and two fungal species alone or in combination in increasing resistance of two tomato cultivars against fusarium wilt disease. Journal of Applied Research in Plant Protection. 12(10). 43-56.
Mirzamasoumzadeh, B., Ghalichechi, S., Salami, M., Karimi, M., & Baghal Mohseni, A. (2013). The study of wheat genotypes is planted in Ardabil using multivariate statistical methods. International Journal of Farming and Allied Sciences, 2(8), 188-189.
Mishra, S., Singh, A., Keswani, C., Saxena, A., Sarma, B., & Singh, H. (2015). Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In Plant Microbes Symbiosis: Applied Facets (pp. 111-125). Springer link, United Kingdom.   
Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual review of Plant Biology, 49(1), 249-279.
Orzaez, D., Mirabel, S., Wieland, W. H., & Granell, A. (2006). Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiology, 140(1), 3-11.
Pathak, D., Kumar, M., & Rani, K. (2017). Biofertilizer application in horticultural crops. In Microorganisms for Green Revolution (pp. 215-227). Springer, Hisar, India. .
Paudel, K., Kumar, S., Meur, S., & Kumaresan, A. (2010). Ascorbic Acid, Catalase and Chlorpromazine Reduce Cryopreservation‐induced Damages to Crossbred Bull Spermatozoa a. Reproduction in domestic animals, 45(2), 256-262.
Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic acids research, 29(9), e45-e45.
Sabbagh, E., Sabbagh, S. K., Panjehkeh, N., & Bolok-Yazdi, H. R. (2018). Jasmonic acid induced systemic resistance in infected cucumber by pythium aphanidermatum. Tarim Bilimleri Dergisi J Agric Sci, 24(1), 143-152.
Sabbagh, S. K., Golestani, M., Sarafaraz, M. R., Abbasi, E., & Taheri, M. (2020). Spermidin phytohormone and induce resistance of two tolerant Termeh and sensitive Capitan cultivar of tomato against Fusarium wilting disease caused by Fusarium oxysporum fsp. Lycopersici. Iranian Journal of Plant Protection Science, 51(2), 297-313.
Sabbagh, S. K., Poorabdollah, A., Sirousmehr, A., & Gholamalizadeh Ahangar, A. (2017). Bio-fertilizers and Systemic Acquired Resistance in Fusarium Infected Wheat. Jounal of Agricultural Science and Technology (JAST), 19(2), 453-464.
Sabrol, H., & Satish, K. (2016). Tomato plant disease classification in digital images using classification tree. 2016 international conference on communication and signal processing (ICCSP), India.
Sarma, B. K., Yadav, S. K., Singh, S., & Singh, H. B. (2015). Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biology and Biochemistry, 87, 25-33.
Tomás‐Barberán, F. A., & Espin, J. C. (2001). Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food and Agriculture, 81(9), 853-876.
Voxeur, A., & Höfte, H. (2016). Cell wall integrity signaling in plants:“To grow or not to grow that's the question”. Glycobiology, 26(9), 950-960.
Wiermer, M. (2005). Molecular and spatial characterisation of Arabidopsis EDS1 defence regulatory complexes Universität zu Köln]. PhD Tesism, University of Kolnm, Germany.
Zavaliev, R., & Dong, X. (2023). NPR1, a key immune regulator for plant survival under biotic and abiotic stresses. Molecular Cell. ??(??), ??-??.
Zhou, X., Wang, J.-T., Wang, W. -H., Tsui, C. K., & Cai, L. (2021). Changes in bacterial and fungal microbiomes associated with tomatoes of healthy and infected by Fusarium oxysporum f. sp. lycopersici. Microbial ecology, 81(4), 1004-1017.