c3518cb17d976b8

ارزیابی اثر رهاسازی کنترل‌شده نانو‌اسانس‌های پوست پرتقال و نارنگی بر سمیت تدخینی آن‌ها علیه شپشه‌ آرد Tribolium confusum (Col.: Tenebrionidea) و شپشه برنج Sitophilus oryzae (Col: Curculionidae)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاهپزشکی، دانشکده کشاورزی، دانتشگاه جیرفت، جیرفت، ایران

2 اداره کل استاندارد استان کرمان، کرمان، ایران

3 بخش فنی و فروش شرکت سینجنتا، خوزستان، ایران

4 گروه شیمی، دانشکده علوم پایه، دانشگاه جیرفت، جیرفت، ایران

چکیده

نانوامولسیون یکی از کارآمدترین انواع فرمولاسیون برای رسیدن به هدف رهاسازی کنترل‌شده اسانس­ها است. در این تحقیق به منظور نشان دادن اثر رهاسازی کنترل‌شده، 24 و 48 ساعت پس از تیمار، تغییرات سمیت تدخینی اسانس­ها و نانواسانس­های­ پوست پرتقال و نارنگی روی دو آفت انباری شپشه آرد Tribolium confusum و شپشه برنج Sitophilus oryzae مورد مطالعه قرار گرفت. اسانس­ها به روش تقطیر آبی از پوست پرتقال و نارنگی استخراج شده و با کروماتوگرافی گازی طیف‌سنجی جرمی (GC-MS) محتوای آن­ها مورد تحلیل قرار گرفت. تبدیل اندازه ذرات اسانس به مقیاس نانومتر با دستگاه تولید امواج مافوق صوت پروب­دار[1] (UPS) و تعیین اندازه نانوذرات، با استفاده از دستگاه پراکندگی دینامیکی نور[2] (DLS) 65 نانومتر برآورد شد. بر پایه آزمایش‌های مقدماتی، غلظت­های 5، 10، 15، 20، 25، 50، 75 و 95 میکرولیتر در 125 میلی­لیتر حجم ظرف آزمایش از اسانس­ها و نانواسانس­ها تهیه شد و جهت ارزیابی سمیت تدخینی مورد استفاده قرار گرفت. زیست­سنجی­ها در دمای 2±25 درجه سلسیوس در تاریکی و در 3 تکرار مستقل در زمان­های 24 و 48 ساعت انجام شد. سمیت تدخینی اسانس­ها در 24 ساعت بیشتر بود در حالی که نانواسانس­ها در 48 ساعت کارایی بیشتری از خود نشان دادند. بیشترین مرگ­و­میر شپشه آرد و شپشه برنج به ترتیب 90 و 67/96 درصد مربوط به نانواسانس پرتقال در زمان 48 ساعت و غلظت 95 میکرولیتر بر 125/0 ­لیتر (حدودا معادل 760 میکرولیتر بر لیتر) با LC50 26/23 میکرولیتر بر 125/0 ­لیتر (حدودا معادل 186 میکرولیتر بر لیتر) مشاهده شد. نتایج این آزمایش، رهاسازی کنترل‌شده نانواسانس­ها در زمان 48 ساعت، با وجود کمتر بودن تأثیر آن­ها در 24 ساعت نسبت به اسانس­های فرموله نشده را در عمل آشکار ساخت.
 
[1]. Ultrasonic probe sonicator
[2]. Dynamic Light Scattering

کلیدواژه‌ها


عنوان مقاله [English]

Investigation on the effect of orange and tangerine peel nanoemulsion controlled release on their fumigant toxicity against Tribolium confusum (Col.: Tenebrionidea) and Sitophilus oryzae (Col: Curculionidae)

نویسندگان [English]

  • moslem basij 1
  • Farideh Ganjavi 2
  • Iman Sharifian 3
  • Razieh Razavi 4
1 Department of Plant Protection, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.
2 Central Standard organization of Kerman Province, Kerman, Iran.
3 Technical and Commercial Department of Syngenta, Khuzestan, Iran
4 Department of Chemistry, University of Jiroft, Jiroft, Iran
چکیده [English]

Nanoemulsion formulation has been one of the most effective types of formulation to achieve a controlled release of essential oils. In this study, to show the effect of controlled release, fumigant toxicity of essential oils and nanoemulsions from orange and tangerine peels were investigated on two storage pests, Tribolium confusum, and Sitophilus oryzae, in 24 and 48 hours. The essential oils were extracted from dried orange and tangerine peels using a hydrodistillation method and their content was analyzed by gas chromatography mass spectrometry (GC-MS). An ultrasonic probe sonicator (UPS) was utilized to convert the essential oil particles into the nanometer scale. Particle sizes were determined using a dynamic light scattering (DLS) instrument and were 65 nanometers. Based on preliminary experiments, eight concentrations (5, 10, 15, 20, 25, 50, 75, and 95 microliters in 125 ml containers) of the essential oils and nanoformulations were prepared for fumigant toxicity evaluation. The bioassays were conducted under controlled conditions at a temperature of 25±2 ᵒC, in the darkness, and with three independent replicates at 24 and 48 hours. Fumigant toxicity of the essential oils was higher at 24 hours, while the nanoemulsions exhibited greater efficacy at 48 hours. The highest observed mortality percentage was recorded for orange nanoemulsion against S. oryzae (96.67%) at 48 hours and a concentration of 95 µl/125 ml (≈760 μl/L) and LC50of 23.26 µl/125 ml (≈186 μl/L). Results showed higher efficiency of nanoemulsions in 48 h while they were less efficient than non-formulated essential oils in 24 h which is related to their controlled release function.

کلیدواژه‌ها [English]

  • plant essential oils
  • nanoemulsion
  • stored product pests
  • fumigant toxicity
  • controlled release

Extended Abstract

Introduction

Essential oils as biopesticides have gained significant attention in recent years due to their potential for eco-friendly and sustainable pest management. They don't have any residue on stored products. One of the key challenges in effectively utilizing essential oils is their controlled release and targeted delivery to the target pests. Nanoemulsion formulation has emerged as a promising approach to achieve this goal, as it can enhance essential oils' stability, solubility, and bioavailability. In this study, the fumigant toxicity of essential oils and their nanoemulsion formulations derived from orange and tangerine peels were investigated against two important storage pests, Tribolium confusum (confused flour beetle) and Sitophilus oryzae (rice weevil). The objectives were to evaluate the impact of nanoemulsion formulation on the controlled release and efficacy of the essential oils compared to the non-formulated oils.

 

Materials and Methods

The essential oils were extracted from dried orange and tangerine peels using a hydrodistillation method, from shed-dried orange and tangerine peels. Their chemical composition was analyzed by gas chromatography-mass spectrometry (GC-MS) with a 30-meter capillary column, 0.25 mm internal diameter, and 0.25 μm film thickness. The temperature program of the column was initially set at 70 °C with a 2-minute hold, then increased to 220°C at a rate of 15 °C per minute, and finally increased to 300 °C and held for 2 minutes. The nanoemulsions were synthesized using 5% v/v of the pure essential oils, Tween 80, and water were mixed, and 1% v/v of ethylene glycol was also added to the mixture. Subsequently, the emulsion solution was subjected to ultrasonic waves using an ultrasonic device (USH650, Max power: 650W) at a frequency of 25 kHz for various durations. This step revealed that the samples became completely transparent after 15 minutes of exposure to the ultrasonic waves. The particle sizes of the nanoemulsions were determined using a dynamic light scattering (DLS) instrument. The fumigant toxicity of the essential oils and their nanoemulsion formulations was evaluated under controlled laboratory conditions (temperature of 27±1 °C, relative humidity of 65±5%) against 1-day-old mature beetles in 125 ml glass containers. Trials were performed using eight different concentrations based on primary tests (5, 10, 15, 20, 25, 50, 75, and 95 microliters) and three independent replicates. The mortality rates of the target pests, T. confusum and S. oryzae, were recorded at 24 and 48 hours. Data were analyzed using SPSS 22.0 software.

 

Results and Discussion

The results of the study revealed that the fumigant toxicity of essential oils was higher at 24 hours compared to the nanoemulsion formulations. It is probably related to their release rate which is higher than nanoemulsions in 24 h. Also, essential oil and nanoemulsion of orange were more efficient than tangerine in both 24 and 48 h. level of Limonene (an active ingredient in their essential oil) as an efficient insecticide was higher in orange oil (94.8%) compared with tangerine (91.7%). Results showed that the average size of nanoemulsion particles was 65 nanometers for both orange and tangerine nanoemulsions. Smaller particle sizes result in better fumigant toxicity because they can more efficiently penetrate the spiracles and cuticles of insects. The nanoemulsion formulations demonstrated higher efficacy at 48 hours, with the highest observed mortality percentage recorded for the orange nanoemulsion at a concentration of 95 µl. The enhanced performance of the nanoemulsions at 48 hours was attributed to their better-controlled release properties, which allowed for a sustained and prolonged exposure of the target pests to the active compounds. The essential oils were more effective in the short term (24 hours), while the nanoemulsions exhibited superior performance in the longer term (48 hours), suggesting that the nanoemulsion formulation can provide better control and management of the target pests. The findings of this study highlight the potential of nanoemulsion formulation to enhance the controlled release and efficacy of essential oils as biopesticides.

 

Conclusion

The improved performance of the nanoemulsions at 48 hours, compared to the non-formulated essential oils, underscores the advantages of using nanoemulsion technology for the delivery and sustained release of active compounds in pest management applications. Further studies are suggested to evaluate the efficacy of nanoemulsions in penetrating and distributing within stored crop depths in silos and storages.

Badawy, M. E., SA Saad, A. F., HM Tayeb, E. S., Mohammed, S. A., & Abd-Elnabi, A. D. (2019). Development and characterization of nanoemulsions of some insecticides by high energy technique for targeting delivery. Journal of Agricultural Research  57(1): 15-23.
Campolo, O. (2021). Essential oil-based green nano-insecticides: formulation, biological activity and application in ecofriendly pest control strategies. In III International Organic Fruit Symposium and I International Organic Vegetable Symposium (pp. 169-180). DOI: 10.17660/ActaHortic.2022.1354.22
Campolo, O., Malacrinò, A., Zappalà, L., Laudani, F., Chiera, E., Serra, D., ... & Palmeri, V. (2014). Fumigant bioactivity of five Citrus essential oils against Tribolium confusum. Phytoparasitica, 42, 223-233.
Dey, D., & Gupta, M. K. (2016). Use of essential oils for insect pest management-a review. Innovative Farming, 1(2), 21-29.
Draz, K. A., Tabikha, R. M., Eldosouky, M. I., Darwish, A. A., & Abdelnasser, M. (2022). Biotoxicity of essential oils and their nano-emulsions against the coleopteran stored product insect pests Sitophilus oryzae L. and Tribolium castaneum herbst. International Journal of Pest Management, 1-15. DOI: 10.1080/09670874.2022.2036862
Du, Z., Wang, C., Tai, X., Wang, G., & Liu, X. (2016). Optimization and characterization of biocompatible oil-in-water nanoemulsion for pesticide delivery. ACS Sustainable Chemistry & Engineering, 4(3), 983-991. DOI: 10.1021/acssuschemeng.5b01058
Giunti, G., Palermo, D., Laudani, F., Algeri, G. M., Campolo, O., & Palmeri, V. (2019). Repellence and acute toxicity of a nano-emulsion of sweet orange essential oil toward two major stored grain insect pests. Industrial Crops and Products, 142, 111869.
Gomes, A., Costa, A. L. R., & Cunha, R. L. (2018). Impact of oil type and WPI/Tween 80 ratio at the oil-water interface: Adsorption, interfacial rheology and emulsion features. Colloids and Surfaces B: Biointerfaces, 164, 272-280.
Hashem, A. S., Awadalla, S. S., Zayed, G. M., Maggi, F., & Benelli, G. (2018). Pimpinella anisum essential oil nanoemulsions against Tribolium castaneum—insecticidal activity and mode of action. Environmental Science and Pollution Research, 25, 18802-18812. DOI: 10.1007/s11356-018-2068-1
Heidari, F., Sarailoo, M., Ghasemi, V., & Nadimi, A. (2017). Toxic and oviposition deterrence activities of essential oils from Citrus sinensis (L.) Osbeck and Citrus paradisi (Macfarlane) fruit peel against adults of Tribolium castaneum (Herbst). Journal of Crop Protection, 6(1), 79-88.
Heydari, M., Amirjani, A., Bagheri, M., Sharifian, I., & Sabahi, Q. (2020). Eco-friendly pesticide based on peppermint oil nanoemulsion: Preparation, physicochemical properties, and its aphicidal activity against cotton aphid. Environmental Science and Pollution Research, 27, 6667-6679. DOI: 10.1007/s11356-019-07332-y
Ibrahim, M.A., Kainulainen, P., Aflatuni, A., Tiilikkala, K., Holopainen, J.K., 2003. Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: with special reference to limonene and its suitability for control of insect pests. Agric. Food Sci. in Finland 10, 243–259.
Isman, M. B. (2020). Botanical insecticides in the twenty-first century—fulfilling their promise? Annual Review of Entomology, 65, 233-249. DOI: 10.1146/annurev-ento-011019-025010
Jarrahi, A., Moharramipour, S., & Imani, S. (2016). Chemical composition and fumigant toxicity of essential oil from Thymus daenensis against two stored product pests. Journal of Crop Protection, 5(2), 243-250.
Jesser, E., Yeguerman, C., Gili, V., Santillan, G., Murray, A. P., Domini, C., & Werdin-González, J. O. (2020). Optimization and characterization of essential oil nanoemulsions using ultrasound for new ecofriendly insecticides. ACS sustainable chemistry & engineering, 8(21), 7981-7992. DOI: 10.1021/acssuschemeng.0c02224
Khanikor, B., Adhikari, K., & Rabha, B. (2021). Citrus essential oils: a suite of insecticidal compounds. Citrus–Research, Development and Biotechnology. DOI: 10.5772/intechopen.95887
Maes, C., Bouquillon, S., & Fauconnier, M. L. (2019). Encapsulation of essential oils for the development of biosourced pesticides with controlled release: A review. Molecules, 24(14), 2539.
Manjesh, K., Kundu, A., Dutta, A., Saha, S., & Neelakanthaiah, B. S. (2022). Bio-insecticidal nanoemulsions of essential oil and lipid-soluble fractions of Pogostemon cablin. Frontiers in Plant Science, 13, 874221.
Moretti, M. D., Sanna-Passino, G., Demontis, S., & Bazzoni, E. (2002). Essential oil formulations useful as a new tool for insect pest control. AAPs PharmSciTech, 3, 64-74.
Mursiti, S., Lestari, N. A., Febriana, Z., Rosanti, Y. M., & Ningsih, T. W. (2019). The activity of d-limonene from sweet orange peel (Citrus Sinensis L.) exctract as a natural insecticide controller of bedbugs (Cimex lectolarius). Oriental Journal of Chemistry, 35(4), 1420.
Nenaah, G. E., Ibrahim, S. I., & Al-Assiuty, B. A. (2015). Chemical composition, insecticidal activity and persistence of three Asteraceae essential oils and their nanoemulsions against Callosobruchus maculatus (F.). Journal of Stored Products Research, 61, 9-16. DOI: 10.1016/j.jspr.2014.12.007
Oboh, G., Ademosun, A. O., Olumuyiwa, T. A., Olasehinde, T. A., Ademiluyi, A. O., & Adeyemo, A. C. (2017). Insecticidal activity of essential oil from orange peels (Citrus sinensis) against Tribolium confusum, Callosobruchus maculatus and Sitophilus oryzae and its inhibitory effects on acetylcholinesterase and Na+/K+-ATPase activities. Phytoparasitica, 45, 501-508.
Pandit, J., Aqil, M., & Sultana, Y. (2016). Nanoencapsulation technology to control release and enhance bioactivity of essential oils. In Encapsulations (pp. 597-640). Academic Press. DOI: B978-0-12-804307-3.00014-4
Said Al-Ahl, H. A., Hikal, W. M., & Tkachenko, K. G. (2017). Essential oils with potential as insecticidal agents: A review. International Journal of Environmental Planting Management 3(4), 23-33.
Satya, S. A. N. T. O. S. H., Kadian, N. E. E. R. U., Kaushik, G., & Sharma, U. M. E. S. H. (2016). Impact of chemical pesticides for stored grain protection on environment and human health. In Proceedings of the 10th international conference on controlled atmosphere and fumigation in stored products, Winnipeg, Canada (pp. 92-97).
Shaaya, E., & Rafaeli, A. (2007). Essential oils as biorational insecticides–potency and mode of action. In Insecticides design using advanced technologies (pp. 249-261). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: 10.1007/978-3-540-46907-0_11
Sharifian, I., Safaralizade, M. H., & Najafi-Moghaddam, P. (2011). Investigation on the insecticidal efficacy of novel pellet formulation against stored products beetles. Munis Entomology and Zoology, 6(1), 204-209.
Souto, A. L., Sylvestre, M., Tölke, E. D., Tavares, J. F., Barbosa-Filho, J. M., & Cebrián-Torrejón, G. (2021). Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules, 26(16), 4835. DOI: 10.3390/molecules26164835
Weisany, W., Yousefi, S., Tahir, N. A. R., Golestanehzadeh, N., McClements, D. J., Adhikari, B., & Ghasemlou, M. (2022). Targeted delivery and controlled released of essential oils using nanoencapsulation: A review. Advances in Colloid and Interface Science, 303, 102655. DOI: 10.1016/j.cis.2022.102655