c3518cb17d976b8

ویژگی‌های بیوشیمیایی آنزیم آلفا- آمیلاز کفشدوزک خربزهEpilachna chrysomelina و اثر مهارکنندگی چند بازدارندۀ گیاهی روی آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموختۀ کارشناسی ارشد حشره‌شناسی کشاورزی گروه گیاه‌پزشکی دانشگاه گیلان، گیلان

2 دانشیار، گروه گیاه‌پزشکی دانشگاه گیلان، گیلان

3 دانشیار، گروه بیوشیمی دانشگاه تربیت مدرس، تهران

چکیده

 
Epilachna chrysomelinaیکی از مهم‌ترین آفات گیاهان تیرۀ کدوئیان است. ویژگی‌های بیوشیمیایی آلفا- آمیلاز در حشرات کامل کفشدوزک خربزه بررسی و فعالیت بهینۀ این آنزیم در pH 4 و دمای 50 درجۀ سلسیوس به‌دست آمد. فعالیت ویژۀ آلفا- آمیلاز در رودۀ جلویی، میانی و عقبی ولولۀ گوارش سنین مختلف لارویو حشرات کامل نر و ماده بررسی شد. بیشترین فعالیت این آنزیم در لاروهای سن سوم مشاهده شد و فعالیت آن در حشرات نر و ماده اختلاف معناداری با هم نداشت. فعالیت ویژۀ آلفا- آمیلاز در رودۀ میانی به‌ترتیب 5 و 3/8- برابر فعالیت ویژۀ آن در روده‌های جلویی و عقبی بود. ثابت میکائیلیس- منتن (Km) 69/0 میلی‌گرم بر میلی‌لیتر به‌دست آمد. نتایج زایموگرام آلفا-آمیلاز یک ایزوفرم از این آنزیم را در دستگاه گوارش این حشره نشان داد. همچنین اثر بازدارنده‌های استخراج‌شده از بذور گیاهان خلر (Lathyrus sativus)، شبدر (Trifolium alexandrium)، ذرت (Zea mays)، باقلا (Faba vulgaris)، عدس (Lentis culinaris)، لوبیا چشم‌بلبلی (Vigna unguiculata)، لوبیا (Phaseolus vulgaris) و ماش (V. radiata) روی این آنزیم نشان داد که بازدارنده‌های استخراجی از لوبیا و ماش قادر به مهار آن بودند.

کلیدواژه‌ها


عنوان مقاله [English]

Biochemical characterization of α- amylase in melon ladybird, Epilachna chrysomelina (F.) and inhibitory effects of inhibitors extracted from plant seeds on its activity

نویسندگان [English]

  • Roohangiz Ghanbarnezad 1
  • Mohammad Ghadamyari 2
  • Reza Sajedi 3
1 Former M. Sc. Student, Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan
2 Associate Professor, Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan
3 Associate Professor, Department of Biochemistry, Faculty of Sciences, University of Tarbiat Modares, Tehran
چکیده [English]

Epilachna chrysomelina is one of major pests of cucurbitaceous plants. Biochemical properties of α- amylase were studied in melon ladybird. The optimal pH for α- amylase was found at 4. Also, high amylolytic activity was found at temperature 50 °C. The specific activity of this enzyme in digestive system of different larval instar, foregut, midgut, hindgut and female and male adults were determined. Results showed that the highest specific α- amylase activity was detected in the digestive system of 3rd instar larvae and the enzyme activity in males and females digestive system did not show any significant difference. The enzyme specific activity in midgut was 5- and 8.3-fold higher than foregut and hindgut. The Michaelis–Menten constant (Km) of α-amylase was obtained as 0.69 mg/ml.  Zymogram analysis of α- amylase showed one isoform. Also, inhibitory effect of inhibitors extracted from seeds of Lathyrus sativus, Trifolium alexandrium, Zea mays, Faba vulgaris, Lentis culinaris, Vigna unguiculata, Phaseolus vulgaris and Vigna radiate were evaluated on E. chrysomelina α- amylase activity. Among these inhibitors, the inhibitors extracted P. vulgaris and V. radiate were able to inhibit E. chrysomelina amylase.

کلیدواژه‌ها [English]

  • α- amylase
  • melon ladybird
  • biochemical characterization
  • Inhibitor
Alfonso J. F., Ortego F., Sanchez-Monge R., Garcia-Casado G., Pujol M., Castanera P. & Salcedo G. (1997). Wheat and barley inhibitors active towards α-amylase and trypsin- like actives from Spodoptera  frgiperda , Journal of Chemical Ecology, 23, 1729-1741.
Applebaum, S. W. (1964). The action pattern and physiological role of Tenebrio larval amylase.  Journal of Insect Physiology, 10, 897-906.
Applebaum, S.W. & Konijn, A.M. (1965). The utilization of starch by larvae of the flour beetle. Tribolium castaneum. Journal of Nutrition, 85, 275–282.
Asadi, A., Ghadamyari, M., Sajedi, R.H., Jalali, J. & Tabari, M. (2010). Biochemical characterization of midgut, salivary glands and haemolymph α-amylases of the rice green caterpillar, Naranga aenescens L. (Lep.: Noctuidae). Bulletin of Insectology, 63(2), 175-181.
Baker, J.E. (1983). Properties of amylase from midguts of larvae of Sitophilus zeamais and Sitophilus granarius. Insect Biochemistry, 13, 421–428.
Baker, J. E. (1989). Interaction of partially- purified amylase from larval Anagastia kuehniella (Lepidoptera: Pyralidae) with amylase inhibitors from wheat. Comparative Biochemistry and Physiology, 93 B, 239 - 246.
Baker, J. E. (1991). Purification and partial characterization of α-amylase allozymes from the lesser grain borerRhyzopertha dominica. Insect Biochemistry, 21, 303-311.
Bannakan, I., Hormchan, P., Wongpiyasatid, A. & Engkakul, A. (2007). Effects of alpha -amylase inhibitor on mungbean weevil, Callosobruchus maculatus, in vivo and in vitro and on barley malt alpha-amylase invitro. Kasetsart Journal: Natural Science, 41 , 451 - 460
Bradford, M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,72, 248- 254.
Buonocore, V., Poerio, E., Silvano, V. & Tomasi, M. (1976). Physical and catalytic properties of α- amylase from Tenebrio molitor L. Larvae. Journal of  Biochemistry,153, 621-625.
Chen, M.S., Feng, G., Zen KC, Richardson M, Valdes-Rodrigues S, Reeck GR & Kramer KJ. (1992). Alpha amylase from three species of stored grain Coleopteran and their inhibition by wheat & corn proteinaceous inhibitor. Insect Biochemistry and Molecular Biology, 22, 261-268.
Chougule, N.P., Doyle, E., Fiches, E. & Gatehouse, J. A. )2008(. Biochemical characterization of midgut digestive proteases from Mamestra brassicae (Lep; Noctuiae) and effect of soybean inhibitor (SKTI) in feeding assay. Journal of Insect Physiology,54, 563-572.
Christopher, M. S. M. & Mathavan, S. (1985). Regulation of digestive enzyme activity in the larvae of Catopsilia crocale. Journal of Insect Physiology, 31, 217-221.
Cinco-Moroyoqui, F. J., Díaz-Malváez, F. I., Alanís-Villa, A., Barrón-Hoyos, J.M., Cárdenas-López, J.L., Cortez-Rocha, M.O. & Wong-Corral, F.J. (2008). Isolation and partial characterization of three isoamylases of Rhyzopertha dominica F. (Coleoptera: Bostrichidae). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 150,153-160.
Davis, B. J. (1964). Disc electrophoresis II. Method and application to human serum proteins. Annals of the New York Academy of Sciences, 12, 404- 427.
Dojnov, B., Loncar, N., Bozic, N., Nenadovic, V., Ivanovic, J. &  Vujcic, Z. (2010). Comparison of α-amylase isoforms from the midgut of Cerambyx cerdo L. (Coleoptera:Cerambycidae) larvae developed in the wild and on an artificial diet. Archives of Biological Science Belgrade, 62 (3), 575-583.
Dow J. A. T. 1986. Insect midgut function, Advances in Insect Physiology, 19, 187-329.
Farshbaf Pour Abad, R., Rashidi, L., Valizadeh, M., Yazdanian, M. & Mohammadi, D. (2010). Evaluating some properties of Indian moth Plodia interpunctella Hübner (Lep., Pyralidae) alpha- amylase. Journal of Plant protection (Agricultural Science and Technology), 24(3), 354-362 (In Farsi).   
Feng, G.H., Richardson, M., Chen, M.S., Kramer, K.J., Morgan, T.D. & Reeck, G.R. (1996) α-Amylase inhibitors from wheat: amino acid sequences and patterns of inhibition of insect and human α-amylases. Insect Biochemistry and Molecular Biology, 26, 419- 426.
Franco, O. L., Rigen, D. J., Melo, F. R. & Grossi-de-Sá MF. (2002). Plant α-amylase inhibitors and their interaction with insect α-amylases structure, Function and potential for crop protection. Europan Journal of Biochemistry, 269(2), 397-412.
Gatehouse, A. M. R., Jepson, K. A. I. & Pavery, D. J. (1989). The effects of alpha amylase inhibitors on insect storage pests: inhibition of alpha-amylase in vitro and effects on development in vitro. Journal of the Science of Food and Agriculture, 37(8), 272-374.
George, D., Ferry, N., Beak. E. & Gatehouse, A. (2008). Charcterization of midgut digestive proteases from the maize stem borer Busseola fusca. Pest Management Science, 64, 1151-1158.
Gutirrez, C., Sanchez-Mong, R., Gomes, L., Ruiz-Tapiador, M., Castanera, M. & Salcedo, G. (1990). Alpha- amylase activities of agriculture insect pest are specifically affected by different inhibitor preparation from wheat and barely endosperms. Plant Science, 72, 37-44.
Hori, K. (1972). Comparative study of property of salivary amylase among various Heteropterous insects. Comparitive Biochemestry and Physiology Part B, 42, 501-508.
Hosseininaveh, V., Bandani, A., Azmayeshfard, P., Hosseinkhani, S. & Kazzazi, M. (2007). Digestive proteolytic and amylolytic activities in Trogoderma granarium Everts (Dermestidae: Coleoptera). Journal of Stored Products Research,43, 515–522.
Hosseininaveh, V. & Ghadamyari, M. (2013). Principle and concepts of experimental methods in insect biochemistry, physiology and toxicology. University of Tehran Press. 577 pp.
Ishimoto, M., Yamada, T. & Kaga, A. (1999 .(Insecticidal activity of an alpha-amylase-like protein resembling a putative precursor of alpha-amylase inhibitor in the common bean, Phaseolus vulgaris L.. Biochimica et Biophysica Acta (BBA) – Protein Structureand Molecular Enzymology,1432(1), 104-112.
Kanekatysa, U. (1978). Studies on further properties for an alkaline amylase in the digestive juice of  the silk worm. Biocontrol Science and Technology, 76, 5-21.
Kashiwaba, K., Tomooka, N., Kaga, A., Hanand, O.K. & Vaughn, D.A. (2002). Characterization ofresistance to three bruchid species (Callosobruchus spp., Coleoptera, Bruchidae) in cultivated rice bean (Vigna umbellata). Journal of Economic Entomology, 96(1), 207-213.
Kazzazi, M., Bandani, A. R. & Hoseinkhani, S. (2005). Biochemical characterization of α-amylase of the Sunn pest, Eurygaster integriceps. Entomological Science, 8, 371- 377.
Kitamura, K., Isimoto, M. & Ishii, S. (1990). Bruchid resistance factors in Phaseolus and Vigna legumes, InK. Fujii et al.(Eds.). Bruchids and Legumes: Economics (pp. 229-239.).
Markwick, N.P., Laing, W.A., Christeller, J.T., Reid, S. J. & Newton,M.R. (1996). α-Amylase activities in larval midgut extracts from four species of Lepidoptera (Tortricidae and Gelechiidae): Response to pH and to inhibitors from wheat, barley, kidney bean, and Streptomyces. Journal of Economic Entomology, 89, 39-45.
Mendiola- Olaya, E., Valencia- Jimenez, A., Valdes- Rodriguez, S., Delano- Frier, J. & Blanco- labra, A. (2000). Digestive amylase from the larger grain borer, Prostephanus truncatus Horn, Compararive Biochemistry and physiology, 126, 425-433.
Naseri, B., Fathipour, Y., Moharramipour, S. & Hosseininaveh, V. (2010). Digestive proteolytic and amylolytic activities of Helicoverpa armigera (Hubner) in response to feeding on different soybean cultivars. The Iranian Plant Protection Congress, 19, 443
Priya, S., Kaur, N. & Gupta, A.K. (2010). Purification, characterization and inhibition studies of α-amylase of Rhyzopertha dominica. Pesticide Biochemistry and Physiology,98, 231–237
Podoler, H. & Applebaum, S. W. (1971). The a-amylase of the beetle Callosobruchus chinensis properties. Biochemical Journal, 121, 321- 325.
Ramzi, S. & Hosseininaveh, V. (2010). Biochemical characterization of digestive  α-amylase, α-glucosidase and β-glucosidase in pistachio green stink bug, Brachynema germari Kolenati (Hemiptera: Pentatomidae). Journal of Asia-Pacic Entomology, 13, 215–219.
Safaei Khorram, M., Farshbaf Pour Adab, R., Yazdaniyan, M.,  &   Jafarnia, S. (2010). Digestive α-amylase from Leptinotarsa decemlineta (Say) (Coleoptera:Chrysomelidae):response to pH, temperature and some mineral compounds. Advances in Environmental Biology, 4(1), 101-107.
Sharifi, M., Gadamyari. M., Mahadavi, M. & Fetemeh, S. (2011). Biochemical characterization of digestive carbohydrasesfrom Xanthogaleruca luteola and inhibition of its α-amylase by inhibitors extracted from the common bean. Archives of Biological Science Belgrade, 63 (3), 705-716.
Silano, V. (1978). Biochemical and nutritional significance of wheat albumin inhibitors of α- amylase. Cereal Chemistry, 55(5), 722-731.
Silva,C.P., Terra,W.R., Xavier-filho, J., Grossi-de-sa, M.F., Lopes, A.R. & Pontes, E.G. (1999). Digestion in larvae of Callosobruchus maculatus and Zabrotes subfasciatus (Coleoptera: Bruchidae) with emphasis on α-amylases and oligo-saccaridases. Insect Biochemistry and Molecular Biology, 29, 355-366.
Sivakumar, S., Mohan, M., Franco, O.L. & Thayumanavan, B. (2006). Inhibition of insect pest α-amylases by little and winger millet inhibitors. Pesticide Biochemistry and Physiology, 85, 155-160.
Strobl, S., Maskos, K., Betz, M., Wiegand, G., Huber, R., Gomis-Ruth, F. X. & Glockshuber, R. (1998). Crystal structure of yellow meal worm α-amylase at 1.64Aº resolution, Journal of Molecular Biology, 278, 617-628.
Valencia, A., Bustillo, A. E., Ossa, G. E. & Chrispeels, M. J. (2000). α-amylase of the coffee berry borer (Hypothenemus hampei) and their inhibition by two plant amylase inhibitors. Insect Biochemistry and Molecular Biology, 30, 207-213.
Vatanparast, M. & Hosseininaveh, V. (2010). Digestive amylase and pectinase activity in the larvae of alfalfa weevil, Hypera postica (Coleoptera: Curculionidae). Journal of the Entomological Research Society,40, 328–335.
Wiseeing, A., Engkagula, A., Wongpiyasatida, A. & Chuwongkomon, K. (2008). Purification and characterization of Callosobruchus maculatus α-amylase. Kasetsart Journal: Natural Science, 42, 240-244
Yazdanian, M., Farshbaf Pour Abad, R., Rashidi, L., Valizadeh, M., Rashtizadeh, N., Vatankhah, M.& Hamidi, A.A. (2010). Effects of some alpha-amylase inhibitors on the salivary alpha-amylase activityof the stripped bugGraphosoma lineatum (HeteropteraScutelleridae). Journal of Plant protection (Agricultural Science and Technology), 24(2), 173-186 (In Farsi).