c3518cb17d976b8

تجمع بیولوژیکی برخی از منابع انرژی در سن گندم Eurygaster integriceps (Hem. Scutelleridae) تحت تیمار نیم‌آزال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد، حشره‌شناسی، دانشکدۀ کشاورزی، دانشگاه زنجان

2 استادیار، گروه گیاه‌پزشکی، دانشکدۀ کشاورزی، دانشگاه زنجان

چکیده

ذخیرۀ منابع انرژی در حشرات کامل زمستان‌گذران سن گندم Eurygaster integriceps اهمیت شایان توجهی در بقای زمستانی آنها دارد. در پژوهش حاضر، تغییر ترکیبات بیوشیمیایی حشرات کامل نسل جدید سن گندم تیمارشده با غلظت‌های زیرکشندۀ نیم‌آزال تی‌اس یک درصد مطالعه شد. نخست، حشرات کامل سن گندم با غلظت‌های مختلف نیم‌آزال (0، 100، 300 و 500 میکرولیتر بر لیتر (μl/l)) تحت شرایط مزرعه تیمار شدند و نمونه‌برداری به فواصل زمانی 3، 6 و 12 روز بعد از سم‌پاشی انجام گرفت. در مرحلۀ دوم، یک هفته پس از سم‌پاشی اول، تعدادی از حشرات مرحلۀ اول مجدداً با غلظت‌های مشابه تیمار شد و نمونه‌برداری 3، 6 و 12 روز بعد انجام گرفت. میزان قند، گلیکوژن، چربی و پروتئین موجود برای هر یک از دو جنس نر و ماده در چهار تکرار بر حسب میلی‌گرم بر گرم وزن تر بدن حشره تعیین شد. نتایج نشان داد که نیم‌آزال تأثیر معناداری بر میزان چربی، گلیکوژن، قند، پروتئین و محتوای کل ذخایر انرژی (001/0P<) دارد و هر سه غلظت سبب افزایش میزان چربی و پروتئین در مقایسه با شاهد شده‌اند. به‌طوری که پس از کسر اثر شاهد، چربی 53/85، 3/97 و 22/108 درصد و پروتئین 62/4، 23/14 و 27/34 درصد به‌ترتیب در غلظت‌های 100، 300 و 500 μl/l افزایش یافته‌اند. میزان گلیکوژن در اولین غلظت به میزان 35/27 درصد کاهش داشته و در بقیۀ غلظت‌ها تفاوت معناداری را با شاهد نشان نداده است. همچنین میزان قند در مقایسه با شاهد به‌ترتیب در سه غلظت 9/9، 37/27 و 76/43 درصد کاهش یافته است. در مجموع محتوای کل ذخایر انرژی در سه غلظت تأثیرات افزایشی نشان داده و گذر زمان و نیز سم‌پاشی مجدد این افزایش را تشدید کرده است. این فاکتور بین دو جنس نر و ماده تفاوت معناداری نداشته است

کلیدواژه‌ها


عنوان مقاله [English]

Bioaccumulation of some bioenergetics resources in Sunn pest, Eurygaster integriceps (Hem. Scutelleridae), under treatment of Neem-azal

نویسندگان [English]

  • Zahra Hajsamadi 1
  • Morteza Movahedi Fazel 2
  • Aurang Kavousi 2
  • Kobra Fotouhi 1
1 Former Graduate Student, Entomology, Faculty of Agriculture, University of Zanjan, Iran
2 Former Graduate Student, Entomology, Faculty of Agriculture, University of Zanjan, Iran
چکیده [English]

Stored bioenergetic resources in overwintering adults of sunn pest, Eurygaster integriceps, is important in their hibernation. The present study examined some biochemical changes in the adults treated by sub-lethal concentrations (≤ LC30) of Neem-azal T/S. Initially, adults of new generation were sprayed by different concentrations of Neem-azal (100, 300, 500 and 0 µl/l) under field conditions for 3, 6 and 12 days. Then, the adults of the first experiments were resprayed a week later by Neem-azal at the same concentrations prior to resampling for 3, 6 and 12 days. The amounts of lipid, sugar, glycogen and protein of four males and females were determined (mg/g; w/w). Results revealed significant effects Neem-azal on total lipid, glycogen, sugar, protein and energy content (P< 0.001). So that all of three concentration increased lipid and protein contents versus control hemipterans. The net amount of lipids and proteins were increased in 100, 300 and 500 µl/l levels respectively 85.53%, 97.3%, 108.22% and 4.62%, 14.23%, 34.27%. The glycogen quantity decreased 27.35% in 100 µl/l concentration level and no significant differences in other doses with respect to control. Also sugar quantity was decreased 9.9, 27.37 and 43.76% respectively in 100, 300 and 500 µl/l concentration levels. The energy content (EC) was increased in three doses and this trend conntinued with the passage of time. Respraying also was affected on increasing of EC and adult sexes not significant effect on it.
 

کلیدواژه‌ها [English]

  • Sunn pest
  • Neem-azal
  • Lipids
  • Carbohydrates
  • proteins
  1. Ali, N. S., Ali, S. S. & Shakori, A. R. (2011). Effects of Sublethal Doses of Talstar on Biochemical Components of Malathion-Resistant and -Susceptible Adults of Rhyzopertha dominica. Pakistan Journal of Zoology, 43(5), 879-887.
  2. Analytical software. (2003). Statistix 8 users manual. Analytical software, Tallahassee, Florida.
  3. Assar, A. A., Abo El-Mahasen, M. M., Khalil, M. E. & Mahmoud, S. H. (2010). Biochemical effects of some insect growth regulators on the house fly, Musca domestica (diptera: muscidae). Egyptian Academic Journal of Biological Sciences, 2(2), 33-44.
  4. Babu, R., Murugan, K. & Vanithakumari, G. (1996). Interference of Azadirachtin on the food utilization efficiency and midgut enzymatic profiles of Helicoverpa armigera. Indian journal of Environment Toxicology, 6, 81-84.
  5. Barnby, M. A. & Klocke, J. A. (1990) Effects of azadirachtin on levels of ecdysteroids and prothoracicotropichormone-like activity in Heliothis virescens (Fabr.) larvae. Journal of Insect Physiology, 36, 125-131.
  6. Berger, D., Walters, R. & Gotthard, K. (2008). What limits insect fecundity? Body size and temperature dependent egg maturation and oviposition in a butterfly. Functional Ecology, 22, 523-529.
  7. Bosch, J. & Kemp, W. P. (2004). Effect of pre-wintering and wintering temperature regimes on weight loss, survival, and emergence time in the mason bee Osmia cornuta (Hymenoptera: Megachilidae). Apidologie, 35, 469-479.
  8. Broughton, S. J., Piper, M. D., Ikeya, T., Bass, T. M., Jacobson, J., Driege, Y., Martinez, P., Hafen, E., Withers, D. J. & Leevers, S. J. (2005). Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proceedings of the National Academy of Sciences of the United States of America, 102, 3105-3110.
  9. Buckner, J. S., Kemp, W. P. & Bosch, J. (2004). Characterization of triacylglycerols from overwintering prepupae of the alfalfa pollinator Megachile rotundata (Hymenoptera: Megachilidae). Archives of Insect Biochemistry and Physiology, 57, 1-14.
  10. Canhilal, R., Kutuk, H., Kanat, A. D., Islamoglu, M., El-Haramein, F. & El-Bouhssini, M. (2005). Economic threshold for the Sunn Pest, Eurygaster integriceps Put. (Hemiptera: Scutelleridae), on wheat in southeastern Turkey. Journal of Agricultural Urban Entomology, 22, 191-201.
  11. Chippendale, A. K., Chu, T. J. F. & Rose, M. R. (1996). Complex trade-offs and the evolution of starvation resistance in Drosophila melanogaster. Evolution, 50, 753-766.
  12. De Kort, C. A. D., Koopmanschap, A. B. & Vermunt, A. M. W. (1997). Influence of pyriproxyfen on the expression of haemolymph protein genes in the Colorado potato beetle, Leptinotarsa decemlineata. Journal of Insect Physiology, 43, 363-371.
  13. 13.    El-Sheikh, T. A. A., Hassanein, A. A., Radwan, E. M. M. & Abo-Yousef, H. M. (2005). Biochemical effects of certain plant oils on the Lesser grain borer, Rhizopertha dominica. Annals of Agricultural Science (Cairo), 50(2), 729-737.
  14. Fatehi, F., Behamta, M. R. & Zali, A. A. (2009). Evaluating the resistance to sunn pest (Eurygaster integriceps Put.) and its relationship with high-molecular-weight glutenin subunit in wheat. Asian Journal of Plant Science, 8, 82-85.
  15. Fotouhi, K. (2013). Effects of some toxicants on bioenergetic resources of Colorado potato beetles, Leptinotarsa decemlineata (Col: Chrysomelidae). M.Sc. Thesis, Faculty of Agriculture, Zanjan University. PP. 135.
  16. Gade, G. (2004). Flight or fight – the need for adipokinetic hormones. International Congress Series, 1275, 134-40.
  17. Gade, G. (2009). Peptides of the adipokinetic/red pigmentconcentrating hormone family – a new take on biodiversity. Annals of the New York Academy of Sciences, 1163, 125-136.
  18. Gade, G., Auerswald, L., Simek, P., Marco, H. G. & Kodri, K. D. (2003). Red pigment-concentrating hormone is not limited to crustaceans. Biochemical and Biophysical Research Communications, 309, 967-973.
  19. Garcia, E., Luz, N., Azambuja, P. & Rembold, H. (1990) Azadirachtin depresses the release of prothoracicotropic hormone in Rhodnius prolixus larvae: evidence from head transplantations. Journal of Insect Physiology, 36, 679-682.
  20. Giannakou, M. E. & Partridge, L. (2007). Role of insulin-like signalling in Drosophila lifespan. Trends in Biochemical Sciences, 32, 180-188.
  21. Gregory, C. (1989). A study of the effects of the juvenile hormone analogue methoprene on the intermediary metabolism of the African migratory locust, Durham theses, Durham University. Available at Durham E-Theses nline:http://etheses.dur.ac.uk/6432/
  22. Gronke, S., Muller, G., Hirsch, J., Fellert, S., Andreou, A. & et al. (2007). Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol 5: e137. doi:10.1371/journal.pbio.0050137
  23. Hahn, D. A. & Denlinger, D. L. (2007). Meeting the energetic demands of insect diapause: nutrient storage and utilization. Journal of Insect Physiology, 53, 760-773.
  24. Ikeya, T., Galic, M., Belawat, P., Nairz, K. & Hafen, E. (2002). Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Current Biology, 12, 1293-1300.
  25. Isman, M. B., Koul, O., Luczynski, A. & Kaminski, J. (1990). Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. Journal of Agriculture Food Chemistry, 38, 1406-1411.
  26. Ito, K. & Nakata, T. (1998). Diapause and survival in winter in two species of predatory bugs, Orius sauteri and O. minutes. Entomologia Experimentalis et Applicata 89, 271-276.
  27. Judd, T. M., Magnus, R. M. & Fasnacht, M. P. (2010). A nutritional profile of the social wasp Polistes metricus: Differences in nutrient levels between castes and changes within castes during the annual life cycle. Journal of Insect Physiology, 56, 42-56.
  28. Kalimuthu, M. & Pandian, R. S. (2010). Toxicological effect of an insecticide that contains organochlorine and pyrethroid on the biochemical constituents of aquatic insect, Diplonychus rusticus (Fabr.). Current Biotica, 4(1), 10-22.
  29. Kassem, M. A., Mohammad, T. A. & Bream, A. S. (2011). Influence of the bioinsecticides, NeemAzal, on main body metabolites of the 3rd larval instar of the house fly Musca domestica (Diptera: Muscidae). African Journal of Biochemistry Research, 5(9), 272-276.
  30. Koul, O., Daniewski, W. M., Multani, J. S., Gumulka, M. & Singh, G. (2003). Antifeedant effects of the limonoids from Entandrophragmacan- dolei (Meliaceae) on the gram pod borer, Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Agricultural and Food Chemistry, 51, 7271–7275.
  31. Krishna, T.,Bhasara Reddy, K., Narst Reddy, M. & Maruthi Ram, G. (2007). Effect of Fenvalerate, A synthetic pyrethroid on the pupal and adult females of sweet potato weevil, Cylas formicarius F (Coleoptera:Curculinidae). Pestology, 31, 26-29.
  32. Kruger, N. J. (1994) The Bradford method for protein quantitation. Methods Molecular Biology, 32, 9-15.
  33. Lease, H. M. & Wolf, B. O. (2011). Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiological Entomology, 36, 29-38.
  34. Leather, S. R., Walters, K. F. A. & Bale, J. S. (1995). The Ecology of Insect Overwintering, Cambridge University Press, Cambridge.
  35. Lee, K. S., Kwon, O. Y., Lee, J. H., Kwon, K., Min, K. J., Jung, S. A., Kim, A. K., You, K. H., Tatar, M. & Yu, K. (2008) Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nature Cell Biology 10, 468–475.
  36. Lefever, K. S., Koopmanschap, A. B. & De Kort, C. A. D. (1989). Changes in the concentrations of metabolites in haemolymph during and after diapauses in female Colorado potato beetle, Leptinotarsa decemlineata. Journal of Insect Physiology, 35, 121-128.
  37. Li, B., Xie, Y., Cheng, Z., Cheng, J., Hu, R., Sang, X., Gui, S., Sun, Q., Gong, X., Cui, Y., Shen, W. & Hong, F. (2012). Cerium Chloride Improves Protein and Carbohydrate Metabolism of Fifth-Instar Larvae of Bombyx mori Under Phoxim Toxicity. Biological Trace Element Research, 150, 214-220.
  38. Lorenz, M. W. & Gade, G. (2009). Hormonal regulation of energy metabolism in insects as a driving force for performance. Integrative and Comparative Biology, 49, 380-392.
  39. Marcic, D. & Medo, I. (2015). Sublethal effects of azadirachtin-A (NeemAzal-T/S) on Tetranychus urticae (Acari: Tetranychidae). Systematic & Applied Acarology, 20(1), 25-38.
  40. Minitab. (2010). Minitab 16 statistical software. Minitab Inc., State College, Pennsylvania, USA.
  41. Mitchell, M., Smith, S., Johnson, S. & Morgan, E. (1997). Effects of the neem tree compounds azadirachtin, salannin, nimbin, and 6−desacetylnimbin on ecdysone 20−monooxygenase activity. Archives of Insect Biochemistry and Physiology, 35, 199-209.
  42. Mordue, A.J. & Blackwell, A. (1993) Azadirachtin: anupdate. Journal of Insect Physiology, 39, 903-924.
  43. Nation, J. L. (2002) Insect Physiology and Biochemistry. CRC Press, Boca Raton.
  44. Orchard, I., Ramirez, J. M. & Lange, A. B. (1993) .A multifunctional role for octopamine in locust flight. Annual Review of Entomology 38, 227-249.
  45. Pawestri, H. A. & Trubenova, B. (2010). The obeseman to obese yeast. Gizi Indonesia, 33(2), 74-81.
  46. Rharrabe, K., Amri, H., Bouayad, N. & Sayah, F. (2008). Effects of azadirachtin on post-embryonic development, energy reserves and α-amylase activity of Plodia interpunctella Hübner (Lepidoptera: Pyralidae). Journal of Stored Products Research, 44, 290-294.
  47. Rulifson, E. J., Kim, S. K. & Nusse, R. (2002) Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296, 1118–1120.
  48. Saleem, M. A., Shakoori, A. R. & Mantle, D. (1998). Macromolecular and enzymatic abnormalities induced by a synthetic pyrethroid, Ripcord (cypermethrin) in adult beetles of stored grain pests, Tribolium castaneum(Herbst.)(Col. Tenebrionidae). Archives of Insect Biochemistry and Physiology 39, 144-154.
  49. Sardesai, V. (2012) Introduction to Clinical Nutrition, Third edition, CRC press, Taylor & Francis group, P. 360.
  50. Schlegel, A. & Stainier, D. Y. R. (2007) Lessons from ‘‘Lower’’ Organisms: What Worms, Flies, and Zebrafish Can Teach Us about Human Energy Metabolism. Plos Genetics 3(11), 2037-2048.
  51. Schmutterer, H. (1990). Properties and potentials of natural pesticides from the neem tree, Azadirachta indica. Annual review of entomology 35, 271-297.
  52. Senthil-Nathan, S. (2013). Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Frontiers in Physiology, 4, 1-17.
  53. Senthil-Nathan, S., Choi, M. Y., Paik, C. H. & Seo, H. Y. (2007). Food consumption, utilization, and detoxification enzyme activity of the rice leaf folder larvae after treatment with Dysoxylum triterpenes. Pesticide Biochemistry and Physiology, 88, 260-267.
  54. Senthil-Nathan, S., Kalaivani, K., Chung, P. G. & Murugan, K. (2006). Effect of neem limonoids on lactate dehydrogenase (LDH) of the rice leaf folder, Cnaphalocrocis medinalis (Guenee) (Insecta: Lepidoptera: Pyralidae). Chemosphere, 62, 1388-1393.
  55. Senthil-Nathan, S., Kalaivani, K., Murugan, K. & Chung, P. G. (2005). The toxicity and physiological effect of neem limonoids on Cnaphalocrocis medinalis (Guenée) the rice leaf folder. Pesticide Biochemistry and Physiology, 81, 113-122.
  56. Shimizu, T. (1988) Suppressive effects of azadirachtin on spermiogenesis of the diapausing cabbage armyworm, Mamestra brassicae, in vitro. Entomologia Experimentalis et Applicata, 46, 197-199.
  57. Siddiqui, Z. S. & Ahmed, S. (1999) Effect of Dipterex insecticide on carbohydrate, RNA, DNA and Phenolic contents of Vigna Radiata (L) Wilczek and Vigna Mungo (L) Hepper. Pakistan Journal of Botany, 31(1), 93-96.
  58. Smirle, M. J., Lowery, D. T. & Zurowski, C. L. (1996) Influence of neem oil on detoxication enzyme activity in the oblique banded leafroller, Choristoneura rosaceana. Pesticide Biochemistry and Physiology, 56, 220-230.
  59. Song, W., Ren, D., Li, W., Jiang, L., Won Cho, K., Huang, P., Fan, C., Song, Y., Liu, Y. & Rui, L. (2010). SH2B regulation of growth,metabolism and longevity in both insects and mammals. Cell Metabolism, 11(5), 427-437.
  60. Takada, Y., Kawamura, S. & Tanaka, T. (2001). Effect of various insecticides on the development of the egg parasitoid Trichogramma dendrolimi (Hymenoptera: trichogrammatidae). Journal of Economic Entomology, 94, 1340-1343.
  61. Tanani, M. A., Ghoneim, K. S. & Hamadah, KH. SH. (2012). Comparative effects of certain IGRs on the carbohydrates of hemolymph and fat body of the Desert locust, Schistocerca gregaria (Orth:Acrididae). Florida Entomologist, 95(4), 928-935.
  62. Teleman, A. A., Maitra, S. & Cohen, S. M. (2006). Drosophila lacking microRNA miR- 278 are defective in energy homeostasis. Genes Development 20, 417-422.
  63. Van Handel, E. & Day, J. F. (1988) Assay of lipids, glycogen and sugars in individual mosquitoes: correlations with wing length in field-collected Aedes vexans. Journal of American Mosquito Control Association 4, 549-550.
  64. Willrich, M. M. & Boethel, D. J. (2001). Effect of diflubenzuron on Pseudoplusia includens (Lepidoptera: Noctuidae) and its parasitoid Copidosoma floridanum (Hymenoptera: Encyrtidae). Environmental Entomology 30, 794-797.
  65. Yi, S. X. & Adams, T. S. (2000). Effect of pyriproxyfen and photoperiod on free amino acid concentrations and proteins in the hemolymph of the Colorado potato beetle, Leptinotarsa decemlineata (Say). Journal of Insect Physiology, 46, 1341-1353.
  66. Zhu, Q., He, Y., Yao, J., Liu, Y., Tao, L. & Huang, Q. (2012). Effects of sublethal concentrations of the chitin synthesis inhibitor, hexaflumuron, on the development and hemolymph physiology of the cutworm, Spodoptera litura.. Journal of Insect Science, 12(27), 1-13.
  67. Zibaee, A., Zibaee, I. & Sendi, J. J. (2011). A juvenile hormone analog, pyriproxifen, affects some biochemical components in the hemolymph and fat bodies of Eurygaster integriceps Puton (Hemiptera: Scutelleridae). Pesticide Biochemistry and Physiology, 100, 289-298.