نقش مهارکنندۀ پای‌پرونیل بوتوکساید در میزان فعالیت ویژۀ آنزیم گلوتاتیون اس‌ترانسفراز پسیل معمولی پسته، Agonoscena pistaciae

نوع مقاله : مقاله پژوهشی


1 دانشجوی کارشناسی ارشد، گروه گیاه‌پزشکی، دانشکدۀ کشاورزی، دانشگاه ولی عصر(عج) رفسنجان

2 استادیار گروه گیاه‌پزشکی، دانشکدۀ کشاورزی، دانشگاه ولی عصر(عج) رفسنجان

3 دانشیار گروه گیاه‌پزشکی، دانشکدۀ کشاورزی، دانشگاه گیلان


گلوتاتیون اس‌ترانسفرازها نقش بسیار مهمی در غیرسمی کردن ترکیبات آفت‌کش و مقاومت حشرات در برابر حشره‌کش‌ها ایفا می‌کنند. در این پژوهش تفاوت فعالیت آنزیم‌های گلوتاتیون اس‌ترانسفراز در دو فرم تابستانه و زمستانه پسیل بررسی شده است و اثر غلظت‌های‌ مختلف پی‌پرونیل بوتوکساید (PBO) (5/0، 1، 2، 4 و 8 میلی‌گرم بر لیتر) روی حشرات کامل پسیل پسته در میزان مهار فعالیت این آنزیم با استفاده از سوبسترای 1، کلرو 2 و 4 دی‌نیترو بنزن ((CDNB انجام گرفته است. همچنین میزان فعالیت آنزیم گلوتاتیون اس‌ترانسفراز در زمان‌های 0، 1، 2، 4 و 6 ساعت پس از تیمار حشرات کامل با دزی که بیشترین مهارکنندگی را روی این آنزیم داشت، سنجش شده است. نتایج نشان داد که میزان فعالیت آنزیم در فرم‌های مختلف پسیل با هم ختلاف معنا‌داری (05/0< P) نداشتند و کمترین میزان فعالیت آنزیم گلوتاتیون اس‌ترانسفراز، یا به عبارتی بیشترین میزان مهارکنندگی توسط پای‌پرونیل بوتوکساید در غلظت 5/0میلی‌گرم بر لیتر دیده شد و بیشترین مهارکنندگی در زمان 4 ساعت بعد از کاربرد سینرژیست (PBO) صورت گرفت. با توجه به نتایج این پژوهش چنین به نظر می‌رسد که بتوان با کاربرد مناسب دز PBO، آنزیم گلوتاتیون اس‌ترانسفراز را مهار و با در نظر گرفتن زمان حداکثر مهار توسط این سینرژیست در مدیریت مقاومت پسیل به آفت‌کش‌ها سود برد.


عنوان مقاله [English]

پسیل پسته، سینژیست، مدیریت مقاومت به آفت‌کش‌ها، PBO.

نویسندگان [English]

  • Pooyan Moslehi 1
  • Ali Alizadeh 2
  • Mohammad Ghadamyari 3
1 M. Sc. Student, Department of Crop Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Iran
2 Assistant Professor, Department of Crop Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Iran
3 Associate Professor, Department of Plant Protection, Faculty of Agriculture, University of Gilan, Iran
چکیده [English]

Glutathion S-transferase enzymes have an important role in the detoxification of pesticides compounds and the resistance of insects to insecticides. In this study, the activity of glutathione S-transferase enzyme between summer and winter forms of pistachio psyllid, were measured and the effect of different concentrations of PBO (0.5, 1,2,4 and 8 mg/Lit) on the inhibition of activity of this enzyme were investigated by using of 1- chloro- 2,4- dinitrobenzene (CDNB) as a substrate. In addition, the activity of glutathione S-transferase were determined at 0, 1, 2, 4 and 6 hour after treatment the adults by the concentration of PBO that had maximum inhibition on this enzyme.  The results indicated that there is no significant deference between the activity of enzyme in different forms of pistachio psyllid (P<0.05) and the lowest activity of glutathione S-transferase or highest inhibition were obtained in 0.5 mg L-1 of  PBO and the maximum inhibition were done at 4 hour after the synergism application.  According to these results, it seems that by using the suitable dose of PBO and matching the time that the synergist has maximum inhibition to the glutathione S-transferase we will be able to promote the resistance management of pistachio psyllid to pesticides.

کلیدواژه‌ها [English]

  • PBO
  • Pesticide Resistance management
  • Pistachio psyllid
  • Synergist
  1. Abd El-Latif, A.O. &  Subrahmanyam, B. (2010). Pyrethroid synergists suppress esterase-mediated resistance in Indian strains of the cotton bollworm, Helicoverpa armigera (Hübner). Pesticide Biochemistry and Physiology, 97, 279-288.
  2. Alizadeh, A., Talebi, Kh., Hosseininaveh, V. & Ghadamyari, M. (2011).  Metabolic resistance mechanisms to phosalone in the common pistachio psyllid, Agonoscena pistaciae (Hem.: Psyllidae). Pesticide Biochemistry and Physiology, 101, 59-64.
  3. Alizadeh, A., Talebi, Kh., Hosseininaveh, V. & Ghadamyari, M. (2013).  Susceptibility of the common pistachio psyllid,  Agonoscena pistaciae (Hem.: Psyllidae) to amitraz and imidacloprid in Kerman province. Iranian Journal of Plant Protection science, 1, 153-161. (In Farsi).
  4. Bradford, M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of proteindye binding, Analytical Biochemistry, 7, 248-254.
  5. Bues, R., Boudinhon,L., Toubon. L. (2003). Resistance of pear psylla (Cacopsylla pyri L.; Hom:Psyllidae) to deltamethrin and synergism with piperonyl butoxide, Journal of Applied Entomology,. 127, 305-312.
  6. Clark, A.G., N.A. Shamaan, & M.D. Sinclair. (1986). Insecticide metabolism by multiple glutathione Stransferases in two strains of the house fly, Musca domestica (L). Pesticide Biochemistry and Physiology, 25, 169-175.
  7. Clark, A.G. & N.A. Shamaan. (1984). Evidence that DDT-dehydrochlorinase from the house fly is a glutathione S transferase. Pesticide Biochemistry and Physiology, 22, 249-261.
  8. Enayati, A.A., Ranson, H., & Hemingway, J. (2005). Insect glutathione transferases and insecticide resistance, Insect Molecular Biology, 14, 3–8.
  9. 9.       Fournier, D., Bride, J.M., Hoffman, F. & Karch, F. (1992). Acetylcholinesterase two types of modifications confer resistance to insecticides. Journal of Biological Chemistry,  267, 14270-14274.
  10. 10.    Gunning., R.V. 2006. Inhibition of carbamate- insensitive acetylcholinesterase by piperonyl butoxide in Helicoverpa armigera. Journal of Molecular Neuroscience, 30, 21-22.
  11. Gunning, R.V., Moores, G.D., & Devonshire, A.L. (1997). Esterases and fenvalerate resistance in a Weld population of Helicoverpa punctigera (Lepidoptera: Noctuidae) in Australia, Pesticide Biochemistry and Physiology, 58, 155-162.
  12. Gunning, R.V., Moores, G.D., & Devonshire, A.L. (1999). Esterase inhibitors synergise the toxicity of pyrethroids in Australian Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae), Pesticide Biochemistry and Physiology,  63, 50-62.
  13. Habig, W.H., M.J. Pabst, & W.B. Jakoby. (1974). Glutathione S-Transferases. Journal of Biological Chemistry, 249, 7130-7139.
  14. Hassall, K.A. (1990). The biochemistry and uses of pesticides. 2nd ed. Macmillan Press.
  15. 15.    Hugo, E.,  Baan, V.D. & Croft, A. (2006). Resistance to insecticides in winter and summer forms of pear psylla, Psylla pyricola. Pesticide Science, 32,225-235.
  16. Li, A.L., Guerrero, F.D. & Pruett, J.H. (2007). Involvement of esterases in diazinon resistance and biphasic effects of piperonyl butoxide on diazinon toxicity to Haematobia irritans (Diptera: Muscidae). Pesticide Biochemistry and Physiology, 87, 147-155.
  17. Liu, N., & Yue, X. (2000). Insecticide resistance and crossresistance in the house fly (Diptera: Muscidae), Journal of Economic Entomology, 93, 1269.
  18. Lumjuan, N., Rajatileka, S., Changsom, D., Wicheer, J., Leelapat, P., Prapanthadara, L.A., Somboon, P., Lycett, G. & Ranson H. (2011). The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochemistry and Molecular Biology, 41, 203-209.
  19. Qin G, Jia M, Liu T, Zhang X, & Guo Y. (2013). Characterization and Functional Analysis of Four Glutathione S-Transferases from the Migratory Locust, Locusta migratoria. PloS one Journal, 67, 609-740.
  20. Ramoutar, D., Cowles, R.S. & Alm, S.R. (2009). Pyrethroid resistance mediated by enzyme detoxification in Listronotus maculicollis (Coleoptera: Curculionidae) from Connecticut. Journal of Economic Entomology, 102,1203-1208.
  21. 21.    Ranson, H., L. Rossiter, & F. Ortelli. (2001). Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochemical Journal, 359, 295-304.
  22. Salinas, A.E. & M.G. Wong.(1999). Glutathione S-Transferases.A Review.Current Medicinal Chemistry, 6, 279-309.
  23. Sanchez-Arroyo, H., Koehler, P.G. & Valles, S.M. (2001). Effects of the synergists piperonyl butoxide and S, S, S-tributyl phosphorotrithioate on propoxur pharmacokinetics in Blattella germanica (Blattodea: Blattellidae), Journal of Economic Entomology, 94, 1209.
  24. 24.    Sarkar, M., Bhattacharyya, I.K., Borkotoki, A., Goswami, D., Rabha, B., Baruah, I. & Srivastava, R.B. (2009). Insecticide resistance and detoxifying enzyme activity in the principal bancroftian filariasis vector, Culex quinquefasciatus, in northeastern India. Medical and Veterinary Entomology, 23,122-131.
  25. 25.    Sawicki, R., S.P. Singh, & A.K. Mondal. (2003). Cloning, expression and biochemical characterization of one Epsilon-class (GST-3) and ten Deltaclass (GST-1) glutathione S-transferases from Drosophila melanogaster, and identification of additional nine members of the Epsilon class. Biochemical Journal, 370, 661-669.
  26. Scott, J.G. (1990).  Investigating mechanisms of insecticide resistance: Methods, strategies and pitfalls. In: Pesticides resistance in arthropods, R. T. Roush and E. Tabashnik (Eds.). Chapman and hall Newyork and Landon, 39- 57.
  27. Scott, J.G. (1999). Cytochromes P450 and insecticide resistance. Insect Biochemistry and Molecular Biology, 29,757-777.
  28. Tsagkarakou, A., Pasteur, N., Cuany, A., Chevillon, C., & Navajas, M. (2002). Mechanisms of resistance to organophosphates in Tetranychus urticae (Acari: Tetranychidae) from Greece, Insect Biochemistry and Molecular Biology, 32, 417-424.
  29. Valles, S.M., Koehler, P.G., Brenner, R.J. (1997). Antagonism of fipronil toxicity by piperonyl butoxide and S, S, S-tributyl phosphorotrithioate in the German Cockroach (Dictyoptera: Blattellidae), Journal of Economic Entomology, 90, 1254-1258.
  30. Vandebaan, H., Westigard, P., Burts, E. & Croft B. (1989). Seasonal susceptibility to insecticides in insecticide-resistant pear psylla, (Homoptera: Psyllidae). Crop Protection, 8, 122-126.
  31. 31.    Vontas, J.G., G.J. Small, & J. Hemingway. (2001). Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochemical Journal,357, 65-72.
  32. Young, S.J., Gunning, R.V. & Moores, G.D. (2005). The effect of piperonyl butoxide on pyrethroid-resistance-associated esterases in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pest Management Science, 61,397-401.
  33. 33.    Young, S.J., Gunning, R.V. and Moores., G.D. (2006). Effect of pretreatment with piperonyl butoxide on pyrethroid efficacy against insecticide resistance Helicoverpa armigera (Lepidoptera: Noctoidae) and Bemisia tabaci(Stenorryncha:Aleyrodidae). Pest Management Science, 62,111-119.
  34. Zhu, Y.C., Snodgrass, G. & Chen, M.S. (2006). Comparative study on glutathione s-transferase activity, cDNA, and gene expression between malathion susceptible and resistant strains of the tarnished plant bug, Lygus lineolaris. Pesticide Biochemistry and Physiology, 87,62-72.
  35. Zhu, Y.C., West, S.,  Snodgrass, G. & Luttrell, R. (2011). Variability in resistance-related enzyme activities in field populations of the tarnished plant bug, Lygus lineolaris. Pesticide Biochemistry and Physiology, 99,265-274.