c3518cb17d976b8

مقایسۀ نواحی ژنی ITS-rDNA و tef1α در بررسی ارتباط تبارزایی بعضی گونه‏های Trichoderma

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه گیاه‌پزشکی، دانشکدۀ کشاورزی، دانشگاه شهید چمران اهواز

چکیده

جنس Trichoderma قارچی تک‏نیائی است که بعضی از گونه‏های آن به‌عنوان عامل کنترل زیستی (بیوکنترل) شناخته می‏شوند. در این بررسی، یازده جدایه از هفت گونۀ‏ Trichoderma شامل Trichoderma harzianum، T. capillare، T. pleuroticola، T. asperellum، T. koningiopsis،
T. brevicompactum و T. virens برای بررسی ارتباط تبارزایی (فیلوژنتیکی) آن‏ها با یکدیگر و با توالی گونه‌های مرجع ثبت‌شده در بانک ژن و ISTH استفاده شد. تودۀ میسیلیومی رشدکرده در محیط PDB با استفاده از کاغذ صافی گرد‏آوری و پس از خشک- ‏انجماد کردن، DNA ژنگانی (ژنومی) آن استخراج شد. نواحی ITS-rDNA و اینترون 2، 3 و 4 از tef1α با استفاده از آغازگرهای عمومی و اختصاصی افزایش و توالی‏یابی شدند. بررسی تبارزایی با الگوریتم درست‏نمایی بیشینه و انتخاب مناسب‏ترین مدل جانشینی نوکلئوتیدی با استفاده از نرم‏افزار MEGA 6 انجام شد. همۀ درختان تبارزایی حاصل، کلاد‏های معتبری برای بیشتر جدایه‏ها تولید کردند که ارتباط به نسبت یکسانی را از آن‏ها نشان ‏داد. در همۀ درختان تبارزایی به‌جز درخت مبتنی بر داده‌های حاصل از توالی‌یابی ناحیة ITS، جدایه‏هایT. koningiopsis  و T. asperellum یک کلاد قاعده‏ای معتبر ایجاد کردند. نتیجۀ بررسی تبارزایی که بر پایۀ توالی نواحی مختلف tef1α، اینترون 2 و3، اینترون 4 و هر سه اینترون، برای گونه‏های T. brevicompactum، T.virens، T.koningiopsis  و T.pleuroticola به دست آمد کلاد‏های معتبرتری نسبت به درخت حاصل از تجزیۀ توالی‌های‏ ITS نشان داند. تجزیه و تحلیل درست‌نمایی بیشینه که بر پایۀ توالی اینترون 4 از tef1α انجام شد، کلادهای معتبری برای بیشتر جدایه‏های Trichoderma ازجمله T. asperellum ایجاد کرد. این نتایج تأیید می‏کند که تبارزایی مبتنی بر اینترون 4 از tef1α گروه‏بندی تبارزایی مناسبی برای گونه‏های تریکودرما فراهم می‏کند.

کلیدواژه‌ها


عنوان مقاله [English]

The comparison of ITS-rDNA and tef1α genomic regions for phylogenetic study of some Trichoderma Species

نویسندگان [English]

  • Mehdi Mehrabi-Koushki
  • Maryam Bavarsad
  • Reza Farrokhinejad
  • Mehdi Jamshidi
  • Ashkan Alimohammadi
Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Genus Trichoderma is a monophyletic fungus which some their species is known as biocontrol agent. This study was carried out for phylogenetic analysis of some isolates of the genus Trichoderma. In this study 73 sequences (including 33 sequences from T. aspereluum, T. brevicompactum, T. capillare, T. harzianum, T. koningiopsis, T. pleuroticola and T. virens and 40 sequences obtained from GeneBank and ISTH) were used in phylogenetic analysis. The biomass of isolates grown in PDB was harvested by filter paper. The genomic DNA was extracted from mycelia after freeze-drying. The regions of ITS-rDNA, tef1/In2-3 and tef1/In4 were amplified using common and specific primers and then sequenced. The data analyzed using maximum likelihood (ML) algorithm through selecting the best-fitting nucleotide substitution model in MEGA 6 software. The results showed that all phylograms present relatively similar relationships for isolates among supported clades. In all gene trees except ITS-based phylogram, the isolates of T. koningiopsis and T. asperellum were positioned within a basal clade with strong bootstrap support. The tef1-based phylogeny showed a stronger supported clade for the species of T. brevicompactum, T.virens, T.koningiopsis and T.pleuroticola compere to ITS-based phylogeny. The tef1/In.4 based ML analysis generated supportive clade for Trichoderma isolates such as T. asperellum. This study confirms that tef1α/Intron4-based phylogeny provide reliable clustering for Trichoderma species.

کلیدواژه‌ها [English]

  • ITS
  • Maximum Likelihood
  • tef1α
  • Trichoderma
Ainsworth, G.C. (1971). Ainsworth and Bisby’s Dictionary of the Fungi. 6th ed. Commonwealth Mycological Institute, Kew, Surrey, England. 663 pp.
Chaverri, P., Castlebury, L.A., Overton, B.E. & Samuels, G.J. (2003). Hypocrea/Trichoderma: species with conidiophore elongations and green conidia. Mycologia, 95, 1100-1140.
Crouse, J. & Amorese, D. (1987). Ethanol Precipitation: Ammonium Acetate as an Alternative to Sodium Acetate. Focus, 9, 3-5.
Dodd, S., Crowhurst, R.N., Rodrigo, A.G., Samuels, G.J., Hill, R.A. & Stewart, A. (2003). Examination of Trichoderma phylogenies derived from ribosomal DNA sequence data. Mycological Research, 4, 32-39.
Druzhinina, I. & Kubicek, C.P. (2005). Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters. Journal of Zhejiang University Science Botany, 6, 100-112.
Druzhinina, I.S., Kopchinskiy, A.G. & Kubicek, C.P. (2006). The first 100 Trichoderma species characterized by molecular data. Mycoscience, 47, 55-64.
Druzhinina, I.S., Kubicek, C.P., Komon-Zelazowska, M., Mulaw, T.B. & Bissett, J. (2010). The Trichoderma harzianum demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. BMC Evolutionary Biology, 10, 94-94.
Druzhinina, I.S., Komon-Zelazowska, M., Ismaiel, A., Jaklitsch, W., Mullaw, T., Samuels, G.J. & Kubicek, C.P. (2012). Molecular phylogeny and species delimitation in the section Longibrachiatum of Trichoderma. Fungal Genetics and Biology, 49, 358-368.
Geiser, D.M., Jimenz Gasco, M.M., Kang, S., Mkalowska, I., Veeraraghavan, N., Ward, T.J., Zhang, N., Kuldau, G.A. & O’Donnell, K. (2004). Fusarium-IDv.1.0: A DNA sequence database for identifying Fusarium. European Journal of Plant Pathology, 110, 473-479.
Gherbawy, Y., Druzhinina, I., Shaban, G.M., Wuczkowsky, M., Yaser, M., El-Naghy, M.A., Prillinger, H.J. & Kubicek, C.P. (2004). Trichoderma populations from alkaline agricultural soil in the Nile valley, Egypt, consist of only two species. Mycological Progress, 3, 211-218
Hall, T.A. (1999).  BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
Harman, G.E., Howell, C.R., Viterbo, A., Chet, I. & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Review Microbiology, 2, 43-56.
Jaklitsch, W.M., Samuels, G.J., Dodd S.L., Lu, B.S. & Druzhinina, I.S.  (2006). Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia. Studies in Mycology, 56, 135-177.
Kubicek, C.P., Bissett, J., Kullnig-Gradinger, C.M., Druzhinina, I.S. & Szakacs, G. (2003). Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genetic and Biology, 38, 310-317.
Kullnig-Gradinger, C., Szakacs, G. & Kubicek, C.P. (2002). Phylogeny and evolution of the genus Trichoderma: a multigene approach. Mycological Research, 106, 757-767.
Mehrabi-Koushki, M., Rouhani, H. & Farsi, M. (2011).Genetic manipulation of fungal strains for Improvement of heterologous genes expression (a minireview). African Journal of Biotechnology, 10(41), 7939-7948.
Mehrabi-Koushki, M., Rouhani, H., & Mahdikhani-Moghaddam, E. (2012). Differential display of abundantly expressed genes of Trichoderma harzianum during colonization of tomato-germinating seeds and roots. Current Microbiology, 65, 524-533.
Naeimi, S., Khodaparast, S.A., Javan-Nikkhah, M., Vagvolgyi, Cs. & Kredics, L. (2011). Species patterns and phylogenetic relationships of Trichoderma strains in rice fields of southern Caspian Sea, Iran. Cereal Research Communication, 39, 560-568.
Raeder, U. & Broda, P. (1985). Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology, 1, 17-20.
Samuels, G.J., Dodd, S.L., Gams, W., Castlebury, L.A. & Petrini, O. (2002). Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia, 94, 146-170.
Samuels, G.J., Dodd, S., Lu, B.S., Petrini, O., Schroers, H.J. & Druzhinina, I. (2006). The Trichoderma koningii aggregate species. Studies in Mycology, 56, 67-133.
Samuels, G.J., Ismaiel, A., Mulaw, T.B., Szakacs, G., Druzhinina, I.S., Kubicek, C.P. & Jaklitsch, W.M. (2012). The Longibrachiatum Clade of Trichoderma: a revision with new species. Fungal Diversity, 55, 77108.
Shoukouhi, E. & Bissett, J. (2008). Preferred primers for sequencing the 50 end of the translation elongation factor 1-alpha gene (EF1-a1) and subunit 2 of the RNA polymerase B gene (RPB2). ISTH available from: http://www.isth.info/methods.
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution,30, 2725-2729.
White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to methods and applications. (Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds). Academic Press, New York, USA: 315-322
Zhang, C.L., Druzhinina, I.S., Kubicek, C.P. & Xu, T. (2005). Biodiversity of Trichoderma in China: evidence for a North to South difference of species distribution in East Asia. FEMS Microbiological Letter, 251, 251-257.