c3518cb17d976b8

ارزیابی اثرگذاری‌ میزان کشندگی ترکیبات آبامکتین، استامی‌پرید و ایندوکساکارب بر سن شکارگر Nesidiocoris tenuis با تغذیه از تخم‌های مینوز گوجه‌فرنگی، Tuta absoluta

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه گیاه‌پزشکی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

چکیده

تغییرپذیری رفتاری عامل‌های زیست (بیو)کنترل پس از در معرض ماندن آن­ها با ترکیب‌های آفت­کش، باعث عدم موفقیت کنترل تلفیقی آفات در بسیاری از موارد شده است. در این بررسی ضمن انجام زیست­سنجی روی حشره‌های کامل سن شکارگر Nesidiocoris tenuis به‌منظور تعیین سطح زیانبار بودن سه آفت­کش آبامکتین، استامی­پرید و ایندوکساکارب، اثرگذاری‌های جانبی این ترکیبات بر رفتار شکارگری سن شکارگر با تغذیه از تخم­های مینوز گوجه‌فرنگی، Tuta absoluta ارزیابی شد. آزمایش­ها در شرایط آزمایشگاهی (دمای 1±25 درجۀ سلسیوس، رطوبت نسبی 10±60 درصد و دورۀ نوری 16:8 تاریکی:روشنایی) انجام گرفت. از غلظت زیرکشندۀ ترکیب‌ها به‌صورت نهشت خشک روی برگ در مدت‌زمان 24 ساعت برای در معرض قرار گرفتن حشرۀ کامل شکارگر استفاده شد. مقادیر LC50 برای سه ترکیب آبامکتین، استامی­پرید و ایندوکساکارب به ترتیب 40/33، 55/36 و 43/204 میلی­گرم مادۀ مؤثره بر لیتر و مقادیر LC30 به ترتیب 42/20، 38/30 و 53/181 میلی­گرم مادۀ مؤثره بر لیتر برآورد شد. همۀ ترکیب‌های موردبررسی، نرخ حملۀ شکارگر را به‌صورت معنی­داری کاهش دادند، هرچند بیشترین تأثیر در تیمار ایندوکساکارب مشاهده شد. همچنین دو ترکیب ایندوکساکارب و استامی­پرید سبب افزایش معنی­دار زمان دستیابی شکارگر در مقایسه با شاهد شدند که میزان افزایش حاصله در تیمار حشره­کش ایندوکساکارب بیشتر از دیگر ترکیبات بوده است. آبامکتین با کمترین تأثیر رفتاری را در بین ترکیبات مورد آزمایش داشته است. بر پایۀ شاخص تأثیر کل (E) در طبقه­بندی IOBC، استامی­پرید (85درصد) و پس‌ازآن ایندوکساکارب (77درصد) برای سن شکارگر N. tenuis زیان­آور بوده و آبامکتین (38درصد) کم­زیان ارزیابی شد.

کلیدواژه‌ها


عنوان مقاله [English]

Lethal and sublethal effects of abamectin, acetamiprid and indoxacarb on predatory bug, Nesidiocoris tenuis feeding on tomato leafminer, Tuta absoluta

نویسندگان [English]

  • Javad Khoshabi
  • Qodratollah Sabahi
  • Iman Sharifian
Department of Plant Protection, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

Behavioral changes of biocontrol agents after exposing to pesticides have an important role in success of IPM programs. In the current study lethal and sublethal effects of abamectin, acetamiprid and indoxacarb as the widely used insecticides were investigated on adults of mirid bug, Nesidiocoris tenuis and its behavior on Tuta absoluta eggs. Experiments were performed in the laboratory conditions (25±1ºC, 60±10% R.H. and 16:8 (L:D) photoperiod). Effects of sublethal concentration of insecticides were evaluated during 24 h period using dried residues of insecticides on tomato leaf. The values of LC50 for abamectin, acetamiprid and indoxacarb against N. tenuis were 33.40, 36.55 and 204.43 and of LC30 were 20.42, 30.38 and 181.53 µl a.i./L, respectively. All insecticides decreased attack rate of the predator; however, the most effective one was indoxacarb. On the other hand, indoxacrab and acetamiprid caused significact increase in handling time of predator while the most effective was indoxacarb. Abamectin showed the lower behavioral effects among the tested insecticides. According to total effect index (E) in IOBC category, acetamiprid (85%) and indoxacarb (77%) were harmful against N. tenuis predatory bug, while, abamectin (38%) was considered as slightly harmful.

کلیدواژه‌ها [English]

  • attack rate
  • handling time
  • IOBC category
  • IPM
  • lethal and sublethal effects
  1. Abbott, W.S. (1925). A method for computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265-267.
  2. Arnó, J. & Gabarra, R. (2011). Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae). Journal of Pest Science, 84(4), 513-520.
  3. Arno, J., Gabarra, R., Estopa, M., Gorman, K., Peterschmitt, M., Bonato, O., Vosman, B., Hommes, M. & Albajes, R. (2009). Implementation of IPM programs in European greenhouse tomato production areas. Tools and constraints. Edicions i publicacions de la UdL, Lleida, Spain.
  4. Baniameri, V. & Cheraghian, A. (2012). The first report and control strategies of Tuta absoluta in Iran. EPPO Bulletin, 42(2), 322-324.
  5. Boualem, M. Allaoui, H. Hamadi, R. & Megahed, M. (2012). Biology and complex of natural enemies of Tuta absoluta in Mostaganem (Algeria). EPPO Bulletin, 42(2), 268-274.
  6. Claver, M.A., Ravichandran, B., Khan, M. M. & Ambrose, D. P. (2003). Impact of cypermethrin on the functional response, predatory and mating behaviour of a non‐target potential biological control agent Acanthaspis pedestris Stal (Hem.: Reduviidae). Journal of Applied Entomology, 127(1), 18-22.
  7. Desneux, N., Decourtye, A. & Delpuech, J.M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81-106.
  8. Desneux, N., Wajnberg, E., Wyskhuys, K.A.G., Burgio, G., Arpaia, S., Narváez-Vazquez, C.A., Cabrera, J.G., Ruescas, D.C., Tabone, E., Frandon, J., Pizzol, J., Poncet, C., Cabello, T. & Urbaneja, A. (2010). Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science, 83, 197-215.
  9. Ebadollahi, A., Safaralizadeh, M. H., Hoseini, S. A., Ashouri, S. & Sharifian, I. (2010). Insecticidal activity of essential oil of Agastache foeniculum against Ephestia kuehniella and Plodia interpunctella (Lepidoptera: Pyralidae). Munis Entomology & Zoology, 5(2), 785-791.
  10. Farhadi, R., Allahyari, H. & Juliano, S.A. (2010). Functional response of larval and adult stages of Hippodamia variegata (Coleoptera: Coccinellidae) to different densities of Aphis fabae (Hemiptera: Aphididae). Environmental Entomology, 39(5), 1586-1592.
  11. Gholamzadeh-Chitgar, M., Hajizadeh, J., Ghadamyari, M., Karimi-Malati, A., Sharifi, M. & Hoda, H. (2014). Cellular energy allocation in the predatory bug, Andrallus spinidens Fabricius (Hemiptera: Pentatomidae), following sublethal exposure to diazinon, fenitrothion, and chlorpyrifos. Journal of Plant Protection Research, 54(1), 78-84.
  12. Guedes, R. N. C. & Picanço, M. C. (2012). The tomato borer Tuta absoluta in South America: pest status, management and insecticide resistance. EPPO Bulletin, 42, 211-216.
  13. He, Y., Zhao, J., Zheng, Y., Desneux, N. & Wu, K. (2012). Lethal effect of imidacloprid on the coccinellid predator Serangium japonicum and sublethal effects on predator voracity and on functional response to the whitefly Bemisia tabaci. Ecotoxicology, 21(5), 1291-1300.
  14. Holling, C. S. (1966). Functional response of invertbrate predators to prey density. Memoirs of the Entomological Society of Canada, 48, 1-86.
  15. Hughes, G. E., Alford, L., Sterk, G. & Bale, J. S. (2010). Thermal activity thresholds of the predatory mirid Nesidiocoris tenuis: implications for its efficacy as a biological control agent. BioControl, 55(4), 493-501.
  16. Jepson, P.C. (1989). The temporal and spatial dynamics of pesticide side-effects on non-target invertebrates. In ‘‘Pesticides and Non-target Invertebrates’’ (P.C. Jepson, Ed.), pp. 95-128. Intercept, Wimborne, UK.
  17. LeOra Software. (2002-2009). POLO-Plus 1.0 Probit and Logit analysis. LeOra Software, Petaluma, California.
  18. Li, D. X., Tian, J. & Shen, Z. R. (2006). Effects of pesticides on the functional response of predatory thrips, Scolothrips takahashii to Tetranychus viennensis. Journal of Applied Entomology, 130(5), 314-322.
  19. Lifeng, M., JunRui, Z. & Zhang, C. R. (2012). Effect of host plants on predatory of Orius similis to Frankliniella occidentalis. Guizhou Agricultural Sciences, 9, 136-139.
  20. Malaquias, J. B., Ramalho, F. S., Omoto, C., Godoy, W. A. C. & Silveira, R.F. (2014). Imidacloprid affects the functional response of predator Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) to strains of Spodoptera frugiperda (JE Smith) on Bt cotton. Ecotoxicology, 23(2), 192-200.
  21. Miranda, M. M. M., Picanco, M. C., Zanuncio, J. C., Bacci, L. & daSilva, E. M. (2005). Impact of integrated pest management on the population of leafminers, fruit borers, and natural enemies in tomato. Cienc Rural, 35, 204-208.
  22. Mollá, O., Biondi, A., Alonso-Valiente, M. & Urbaneja, A. (2014). A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control. BioControl, 59(2), 175-183.
  23. Molla, O., Monton, H., Vanaclocha, P., Beitia, F. & Urbaneja, A. (2009). Predation by the mirids Nesidiocoris tenuis and Macrolophus pygmaeus on the tomato borer Tuta absoluta. IOBC/wprs Bulletin, 49, 203-208.
  24. Nojumian, F., Sabahi, Q., Talaei-Hassanloui, R. & Darvishzadeh, A. (2015). Sublethal effects of spirodiclofen on life table parameters of minute pirate bug Orius niger Wolff (Hemiptera: Anthocoridae). Journal of Entomology and Zoology Studies, 3(1), 227-232.
  25. Overmeer, W. P. J. & Van Zon, A. Q. (1982). A standardized method for testing the side effects of pesticides on the predacious mite, Amblyseius potentillae [Acarina: Phytoseiidae]. Entomophaga, 27(4), 357-363.
  26. Robertson, J. L., Russell, R. M., Preisler, H. K. & Savin, N. E. (2007). Bioassay with Arthropods POLO Computer Programme for Analysis of Bioassay Data.: pp. 224.
  27. Rogers, D. (1972). Random search and insect population models. The Journal of Animal Ecology. 369-383.
  28. SAS Institute. (2003). The SAS system for Windows, Release 9.0. SAS Institute, Cary, Nourth Carolina. USA.
  29. Stark, J. D. & Banks J. E. (2003). Population-level effects of pesticides and other toxicants on arthropods. Annual Review of Entomology, 48, 505-519.
  30. Sterk, G., Hassan, S. A., Baillod, M., Bakker, F., Bigler, F., Blümel, S. & Calis, J. N. M. (1999). Results of the seventh joint pesticide testing programme carried out by the IOBC/WPRS-Working Group ‘Pesticides and Beneficial Organisms’. BioControl, 44(1), 99-117.
  31. Tedeschi, R., Alma, A. & Tavella, L. (2001). Side-effects of three neem (Azadirachta indica Juss) products on the predator Macrolophus caliginosus Wagner (Het: Miridae). Journal of Applied Entomology, 125, 397-402.
  32. Tedeschi, R., Tirry, L., van de Veire, M. & de Clerck, P. (2002). Toxicity of different pesticides to the predatory bug Macrolophus caliginosus (Heteroptera: Miridae) under laboratory conditions. IOBC/wprs Bulletin, 25(11), 71-80.
  33. Urbaneja, A., Monton, H. & Molla, O. (2009). Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis. Journal of Applied Entomology, 133, 292-296.
  34. Overmeer, W.P.J. & Van Zon, A.Q. (1982). A standardized method for testing the side effects of pesticides on the predacious mite, Amblyseius potentillae [Acarina: Phytoseiidae]. Entomophaga, 27(4), 357-363.
  35. Wanumen, A.C., Carvalho, G.A., Medina, P., Viñuela, E. & Adán, Á. (2016). Residual Acute Toxicity of Some Modern Insecticides toward Two Mirid Predators of Tomato Pests. Journal of Economic Entomology, tow059.
  36. Yarahmadi, F., Mosadegh, S., Saber, M. & Shishehbor, P. (2010). Toxicity effects of abamectin, spinosad and chlorpyrifos on predatory bug Orius albidipennis Reuter in laboratory and greenhouse conditions. Journal of Plant Protection (Scientific Journal of Agriculture), 33(1), 11-20. (in Farsi)