c3518cb17d976b8
نوع مقاله : مقاله پژوهشی
نویسندگان
1 استادیار گروه گیاهپزشکی، دانشکدة کشاورزی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران
2 دانشیار، مؤسسة تحقیقات گیاهپزشکی کشور، تهران، ایران
3 دانشیار گروه گیاهپزشکی، دانشکدة کشاورزی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
In this study effect of systemic resistance inducing fluorescent pseudomonads on wheat bacterial leaf streak was investigated. According to the importance of produced siderophore by this kind of bacteria in the induction of systemic resistance, CAS agar medium was used for screening of the isolates with the highest potential for siderophore production. From the 200 isolates that isolated from North West part of Iran, 37 could produce a large amount of siderophore and the diameter of hallo zones produced by these isolates on CAS medium agar was more than 15 mm. Ethylene production bioassay was used for screening the isolates with the potential for induction of systemic resistance in wheat. Among these isolates, only four increased the plant reaction potential against XTC and concentration of ethylene produced by leaf pieces of plants treated by these isolates was more than 2 pmol/ml air. The effect of selected isolates on bacterial leaf streak of wheat in growth chamber was investigated and it was found that only 58A can significantly decrease this disease. Investigation of the enzymatic changes of plant treated by this isolate during pathogenicity process showed that the presence of this bacterium on the wheat roots doesn’t have any effect on peroxidase (PO) and phenylalanine ammonia lyase (PAL) activity in foliage, but after inoculation of the pathogen, the activity of both of them increased.
کلیدواژهها [English]
Acosta, M., Rodriguez-Lopez, J. N. & Pendreno, M. A. eds. (2002). Plant peroxidases. University of Murcia.
Alexander, D. B. & Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12, 39-45.
Alizadeh, A. & Rahimian H. (1989). Bacterial Leaf Streak of Graminea in Iran. EPPO Bulletin, 19, 113-117.
Anand, T., Chandrasekaran, A., Raguchander, T., Prakasam, V. & Samiyappan, R. (2007). Chemical and biological treatments for enhancing resistance in chilli against Colletotrichum capsici and Leveillula taurica. Archives of Phytopathology and Plant Protection, 1, 1-19.
Audenaert, K., Pattery, T., Cornelis, P. & Höfte, M. (2002). Induction of systemic resistance to Botrytis cinerea by Pseudomonas aeruginosa 7NSK2: Role of salicylic acid, pyochelin, and pyocyanin. Molecular Plant-Microbe Interaction, 15, 1147-1156.
Ayers, S. H., Rupp, P. & Johnson, W. T. (1919). A study of the alkali-forming bacteria found in milk (No. 782). US Department of Agriculture.
Bakker, P. A. H. M., Doornbos, R. F., Zamioudis, C., Berendsen, R. L. & Pieterse, C. M. J. (2013). Induced Systemic Resistance and the Rhizosphere Microbiome. Plant Pathology Jounral, 29(2), 136-143.
Bais, H. P., Prithiviraj, B., Jha, A. K., Ausubel, F. M. & Vivanco, J. M. (2005). Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature,434,217-221.
Burd, G. I., Dixon, D. G. & Glick, B. R. (2000). Plant growth promoting bacteria that decreases heavy metal toxicity in plants. Canadian Journal of Microbiology, 46, 237-2.
Daayf, F., Schmitt, A. & Bélanger, R. R. (1997). Evidence of phytoalexins in cucumber leaves infected with powdery mildew following treatment with leaf extracts of Reynoutria sachalinensis. Plant Physiology, 113, 719-727.
Dai, G. H., Nicole, M., Andary, C., Martinez, C., Bresson, E., Boher, B., Daniel, J. F. & Geiger, J. P. (1996). Flavonoids accumulate in cell walls, middle lamellae and calloserich papillae during an incompatible interaction between Xanthomonas campestris pv. malvacearum and cotton. Physiological and Molecular Plant Pathology,49, 285-306.
De Meyer, G., Audenaert, K. & Höfte, M. (1999). Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in plantasalicylic acid accumulation but is not associated with PR1a expression. Europian Journal of Plant Pathology, 105, 513-517.
Espelie, K. E., Franceschi, V. R. & Kolattukudy, P. E. (1986). Immunocytochemical localization and time course of appearance of an anionic peroxidase associated with suberization in wound-healing potato tuber tissue. Plant Physiology, 87, 487-489.
Fallahzadeh-Mamaghani, V., Ahmadzadeh, M. & Sharifi, R. (2009). Screening systemicresistance-inducing fluorescent pseudomonads for control of bacterial blight of cotton caused by Xanthomonas campestris pv. malvacearum. Journal of Plant Pathology, 91, 663-670.
Felix, G., Duran, J. D., Volko, S. & Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant Journal, 18, 265-276.
Flott, B. E., Moerschbacher, B. M. & Reisener, H. (1989). Peroxidase isoenzyme patterns of resistant and susceptible wheat leaves following stem rust infection. New Phytology, 111, 413-421
Forster, R. L. (1982). The status of black chaff disease in Idaho. Idaho wheat (Dec. issue). Idaho State Wheat Growers Association, Owyhee Plaza Hotel, Boise. 20 pp.
Forster, R. L., Mihuta-Grimm, L. & Schaad, N. W. (1986). Black chaff of wheat and barley. University of Idaho, College of Agriculture. Current Information Series 784, 2.
Fry, S. C. (1986). Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu. Review in Plant Physiology, 37, 165.
Gaspar, T. H. C., Thorpe, T. & Greppin, H. (1982). Peroxidases 1970-1980. A survey of their biochemical and physiological roles in higher plants. Université de Genéve, Centre de Botanique, 889-1112.
Gaudin, V., Vrian, T. & Jouanin, L. (1994). Bacterial genes modifying hormonal balances in plants. Plant Physiology Biochemistry, 32, 11-29.
Gould, W. D., Hagedron, C., Bardinelii, T. R. & Zablotowicz, R. (1985). New selective media for enumeration and recovery of fluorescent Pseudomonads from various habitats. Applied Environmental Microbiology, 49, 28-32.
Grayer, R. J. & Kokubun, T. (2001). Plant–fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry, 56,253-263.
Grisebach, H. (1981). Lignins, in Secondary Plant Products. Conn E. E., Ed., Vol. 7 of The biochemistry of plants, 457-478, Academic Press, New York.
Gross, G. G. (1980). The biochemistry of lignification. Advanced Botanical Research, 8, 25.
Hase, S., Van Pelt, J. A., Van Loon, L. C. & Pieterse, C. M. J. (2003). Colonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection. Physiological and Molecular Plant Pathology, 62, 219-226.
Hass, D. & Defago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3, 307-319.
Hugh, R. & Leifson, E. (1953). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram-negative rods. Journal of Bacteriology 66, 24-26.
Kado, E. & Land Heskett, M. G. (1970). Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology, 60, 969-976.
Kerby, K. & Somerville, S. C. (1989). Enhancement of specific intercellular peroxidases following inoculation of barley with Erysiphe graminis f. sp. hordei. Physiological and Molecular Plant Pathology, 35, 323-337.
King, E. O., Ward, M. K. & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Methods, 44, 301-7.
Klement, Z. (1963). Rapid detection of the pathogenicity of phytopathogenic pseudomonads. Nature, 199, 299-300.
Kloepper, J. W. & Schroth, M. N. (1981) Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology, 71, 642-644
Knoester, M. (1998). The involvement of ethylene in plant disease resistance. Ph.D. thesis, Utrecht University.
Knoester, M., Pieterse, C. M., Bol, J. F. & Van Loon, L. C. (1999). Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Molecular Plant-Microbe Interactions, 12(8), 720-727.
Kovacs, N. (1956). Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature, 178, 703.
Leeman, M., Den Ouden, F. M., Van Pelt, J. A., Dirkx, F. P. M. & Steijl, H. (1996). Iron availability affects induction of systemic resistance to fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology,86, 149-155.
Leeman, M., Van Pelt, J. A., Den Ouden, F. M., Heinsbroek, M., Bakker, P. A. H. M. & Schippers, B. (1995a). Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. Europian Journal of Plant Pathology, 101, 655-664.
Leeman, M., Van Pelt, J. A., Den Ouden, F. M., Heinsbroek, M., Bakker, P. A. H. M. & Schippers, B. (1995b). Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology, 85, 1021-1027.
Lewis, N. & Davin, L. (1999). Lignans: Biosynthesis and function. In: Sankawa U, ed. Comprehensive Natural Products Chemistry. Amsterdam: Elsevier, 639-712.
Matern, U., Luer, P. & Kreusch, D. (1999). Biosynthesis of coumarins. In: Sankawa U, ed. Comprehensive Natural Products Chemistry. Amsterdam: Elsevier, 623-637.
Maurhofer, M., Hase, C., Meuwly, P., Métraux, J. P. & Défago, G. (1994). Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: Influence of the gacA gene and of pyoverdine production. Phytopathology, 84, 139-146.
McGhie, T. K., Masel, N. P., Maclean, D., Croft, B. J. & Smith, G. R. (1997). Biochemical responses of suspension-cultured sugarcane cells to an elicitor derived from the root pathogen Pachymetra chaunorhiza. Australian Journal of Plant Physiology,24, 143-149.
Mercado-Blanco J., Van der Drift K. M. G. M., Olsson P. E., Thomas-Oates J. E., Van Loon L. C. & Bakker P. A. H. M. (2001). Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. Journal of Bacteriology, 183, 1909-1920.
Meziane, H., Van der Sluis, I., Van Loon, L. C., Höfte, M. & Bakker, P. A. H. M. (2005). Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Molecular Plant Pathology, 6, 177-185.
O’Sullivan, D. J. & O’Gara, F. (1992). Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiological Reviews, 56, 662-676.
Ongena, M., Giger, A., Jacques, P., Dommes, J. & Thonart, P. (2002). Study of bacterial determinants involved in the induction of systemic resistance in bean by Pseudomonas putida BTP1. Europian Journal of Plant Pathology, 108, 187-196.
Pieterse, C. M. J., Van Pelt, J. A., Ton, J., Parchmann, S., Mueller, M. J., Buchala, A. J., Métraux, J. P. & Van Loon, L. C. (2000). Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiology and Molecular Plant Pathology, 57, 123-134.
Pieterse, C. M. J., Van Wees, SCM., Van Pelt, J. A., Knoester, M. & Laan, R. (1998). A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell, 10, 1571-1580.
Pieterse, C. M. J., van Wees, S. C. M., Hoffland, E., van Pelt, J. A. & van Loon, L. C. (1996). Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell, 8, 1225-1237.
Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, C. M. & Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347-375.
Press, C. M., Loper, J. E. & Kloepper, J. W. (2001). Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber. Phytopathology, 91, 593-598.
Ran, L. X., Li, Z. N., Wu, G. J., Van Loon, L. C. & Bakker, P. A. H. M. (2005). Induction of systemic resistance against bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. European Journal of Plant Pathology, 113, 59-70.
Reimers, P. J. & Leach, J. E. (1991). Race-specific resistance to Xanthomonas oryzae pv. oryzae conferred by bacterial blight resistance gene Xa-10 in rice Oryzae sativa involves accumulation of a lignin-like substance in host tissues. Physiology and Molecular Plant Pathology, 38, 39-56.
Ryan, P. R., Germaine, K., Franks, A., Ryan, J. D. & Dowling, N. D. (2008). Bacterial endophytes: recent developments and applications. FEMS Microbiology Letter, 278, 1-9.
Schaad, N. W., Jones, J. B. & Chun, W. (2001) Laboratory Guide for Identification of Plant Pathogenic Bacteria. (3th ed.), APS PRESS, 374pp.
Schmid, P. S. & Feucht, W. (1980). Tissue-specific oxidative browning of polyphenols by peroxidase in cherry shoots. Gartenbauwissenschaft, 45, 68.
Sharifi R., Ahmadzadeh, M., Sharifi Tehrani, A. & Fallahzadeh, V. (2009). Competition for iron uptake by Fluorescent Pseudomonads to control of Rhizoctonia solani Kuhn causing agent of bean damping-off disease. Plant Protection, 22, 183-195. (in Farsi)
Simon, A. & Ridge, E. H. (1974). The use of ampicillin in a simplified selective medium for the isolation of fluorescent pseudomonads. Journal of Applied Bacteriology, 37, 459-460.
Suslow, T. V., M. N Schroth & M. Isaka. (1982). Application of a rapid method for Gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology, 72, 917-918.
Ton, J., Van Pelt, J. A., Van Loon, L. C. & Pieterse, C.M.J. (2002). Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Molecular Plant Microbe-Interaction, 15, 27-34.
Van Loon, L. C. & Antoniw, J. F. (1982). Comparison of the effects of salicylic acid and ethephon with virus-induced hypersensitivity and acquired resistance in tobacco. Netherland Journal of Plant Pathology, 88, 237-56.
Van Loon, L. C., Bakker, P. A. H. M. & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review Phytopathology, 36, 453-483.
Van Wees, S. C. M., Pieterse, C. M. J., Trijssenaar, A., Van’t Westende, Y. A. M., Hartog, F. & Van Loon, L. C. (1997). Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Molecular Plant- Microbe Interactions, 10, 716-724.
Vleesschauwer, D., Djavaheri, M., Bakker, P. A. H. M. & Hofte, M. (2008) Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid–repressible multifaceted defense response. Plant Physiology, 148, 1996-2012.
Walter, M. H. (1992). Regulation of lignification in defense. In: Boller, T. & Meins, F., (Ed) Genes Involved in Plant Defense. (pp. 327-352.) Springer-Verlag.
Yan, Z., Reddy, MS, Ryu, C-M., McInroy, J. A., Wilson, M. & Kloepper, J. W. (2002). Induced systemic protection against tomato late blight elicited by plant growth–promoting rhizobacteria. Phytopathology, 92, 1329-33
Young, S. A., Guo, A., Guikema, J. A., White, F. F. & Leach, J. A. (1995). Rice cationic peroxidase accumulates in xylem vessels during incompatible interactions with Xanthomonas oryzae pv. Oryzae. Plant Physiology, 107, 1333-1341.