c3518cb17d976b8

فعالیت‌ آنزیم‌های کربوهیدرازی مینوز برگ گوجه‌فرنگی Tuta absoluta (Lep.: Gelechidae) در حضور برخی عصاره‌های پروتئینی گیاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده کشاورزی، دانشگاه ولی‌عصر (عج) رفسنجان

2 استادیار، دانشکده کشاورزی، دانشگاه ولی‌عصر (عج) رفسنجان

3 استاد، دانشکده کشاورزی، دانشگاه ولی‌عصر (عج) رفسنجان

4 دانشجوی دکتری، گروه گیاهپزشکی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

چکیده

مینوز برگ گوجه­فرنگی، Tutaabsoluta از مهم‌ترین آفت سبزی و صیفی­جات است که به‌طور چشمگیری تولید گوجه­فرنگی را در جهان تحت تأثیر قرار داده است. با توجه به اثر نامطلوب کاربرد آفت‌کش‌های شیمیایی در کنترل این آفت نیاز به روش‌های جایگزین است. یکی از روش‌هایی که می‌تواند در کنترل این آفت مؤثر باشد استفاده از مهارکننده‌های آنزیمی است. استفاده از مهارکننده‌های آنزیمی نیازمند شناخت دقیق آنزیم‌های هدف در حشرات آفت است. در پژوهش حاضر میزان فعالیت، دما و اسیدیتۀ بهینۀ آنزیم‌های آلفا-گلوکوزیداز، بتا-گلوکوزیداز، آلفا-گالاکتوزیداز و بتا-گالاکتوزیداز و نیز اثر مهارکنندگی عصارۀ پروتئینی گندم کویر، نخود، پیچک، داتوره و تاج‌خروس روی فعالیت این آنزیم‌ها، همره با محاسبۀ IC50، بررسی شده است. بیشترین میزان فعالیت مربوط به آلفا-گلوکوزیداز بود و میزان اسیدیتۀ بهینه برای فعالیت این آنزیم‌ها به‌جز بتا-گلوکوزیداز برابر با 6 به دست آمد. آنزیم بتا-گلوکوزیداز علاوه بر فعالیت بالا در اسیدیتۀ 6، در اسیدیتۀ برابر 8 بیشترین میزان فعالیت را داشت. دمای بهینه برای فعالیت آنزیم­های آلفا و بتا-گلوکوزیداز 40 درجۀ سلسیوس و برای آلفا و بتا-گالاکتوزیداز به ترتیب 40 و 45 درجۀ سلسیوس به دست آمد. در بررسی زایموگرام ژل به ترتیب 2، 3، 1 و 1 باند آنزیمی به ترتیب برای آلفا و بتا-گلوکوزیداز و آلفا و بتا-گالاکتوزیداز مشاهده شد. بررسی تأثیر مهارکننده‌های استخراج‌شده نشان داد، فعالیت آنزیم‌های آلفا-گلوکوزیداز و بتا-گالاکتوزیداز بیشتر تحت تأثیر مهارکننده‌ها قرار می‌گیرد. عصارۀ پروتئینی نخود در مقایسه با سایر گیاهان، مهارکنندگی بیشتری را بر فعالیت آنزیم‌های کربوهیدرازی داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Carbohydrases activity of tomato leaf miner, Tuta absoluta (Lep.: Gelechidae) in the presence of some plant proteinaceous extracts

نویسندگان [English]

  • Zhale Jafari 1
  • Ali Alizadeh 2
  • Hamze Izadi 3
  • Nasir Saberi-Riseh 4
1 M. Sc. Student, Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
2 Assistant Professor, Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
3 Professor, Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
4 Ph.D. Candidate, Department of Plant Protection, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

The tomato leaf miner, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) significantly affects the production of tomato in the world. The damage is done through the holes created in the leaves mesophile due to the larval feeding. Due to unfavorable effects of insecticides application, search for alternative control measures such as suppression of digestive enzymes using enzyme inhibitors is required. In the present study, we investigated activity, optimum pH and temperature of α-glucosidase, β-Glucosidase, α-galactosidase and β-galactosidase. Also the inhibitory effect of proteinaceous extracts of wheat, datura, chickpea, ivy and amaranthus, beside IC50 calculation, were investigated. Based on the results, α-glucosidase had the highest activity followed by β-galactosidase, α-galactosidase and β-glucosidase respectively. The optimum pH of these enzymes activity except of β-glucosidase, was 6. β-glucosidase had high activity in pH 6 with optimal pH 8. The optimal temperatures for α and β-glucosidase enzymes and α and β-galactosidase were 40, 40, 40 and 45°C, respectively. Zymogram of gel electrophoresis revealed 2, 3, 1 and 1 isoforms respectively for α and β-glucosidase and α and β-galactosidase in the digestive system. Results showed that inhibitors more affected activity of α-glucosidase and β-galactosidase. Thus the highest inhibitory rate was related to the pea proteinaceous extract.

کلیدواژه‌ها [English]

  • Carbohydrases
  • enzyme inhibition
  • Tomato leaf miner
  • optimum pH
  • optimum temperature
  1. Aghaali, N., Ghadamyari, M. & Ajamhasani, M. (2012). Biochemical characterization of glucosidases and galactosidases from Rosaceae branch borer, Osphranteria coerulescens Redt. (Col.: Cerambycidae). Romanian Journal of Biochemistry, 49(2), 125-137.
  2. Asadi, A., Ghadamyari, M., Sajedi, R. H., Sendi, J. J. & Tabari, M. (2012). Biochemical characterization of α-and β-glucosidases in alimentary canal, salivary glands and haemolymph of the rice green caterpillar, Naranga aenescens M. (Lepidoptera: Noctuidae). Biologia, 67(6), 1186-1194.
  3. Asano, N. (2003). Glycosidase inhibitors: update and perspectives on practical use. Glycobiology, 13(10), 93-104.
  4. Baker, J. E. (1983(. Properties of amylase from midgets of larvae of Sitophilus zeamais and Sitophilus granaries. Insect Biochemistry, 13, 421-428.
  5. Baniameri, V. & Cheraghian, A. (2012). The first report and control strategies of Tuta absoluta in Iran. EPPO Bulletin, 42(2), 322-324.
  6. Bradford, M. M. )1976(. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochemistery, 72, 248-254.
  7. Budatha, M., Meur, G. & Datta-Gupta, A. (2008). Identification and characterization of midgut proteases in Achaeta janata and their implication. Biotechnology Letters, 30, 305-310.
  8. Cheng, Y. C. & Prusoff, W. H. (1973). Relationship between the inhibition constant (Ki) and the concentration of inhibitor wich causes 50% inhibition (IC50) of an enzymatic reaction. Molecular Pharmacology, 32, 2497-503.
  9. Crowley, J. F., Goldstein, I. J., Arnarp, J. & Lonngren, J. (1984). Carbohydrate binding studies on the lectin from Datura stramonium seeds. Archives of Biochemistry and Biophysics, 231(2), 524-533.
  10. Dastranj, M., Bandani, A. R. & Mehrabadi, M. (2013). Age-specific digestion of Tenebrio molitor (Coleoptera: Tenebrionidae) and inhibition of proteolytic and amylolytic activity by plant proteinaceous seed extracts. Journal of Asia-Pacific Entomology16(3), 309-315.
  11. Davis, B. J. (1964). Disc electrophoresis–II method and application to human serum proteins. Annals of the New York Academy of Sciences, 121(2), 404-427.
  12. Desneux, N., Luna, M. G., Guillemaud, T. & Urbaneja, A. (2011). The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. Journal of Pest Science, 84(4), 403-408.
  13. Edrisi, B., Azimi, M. H. & Khosravi, K. 2013.Vegetable Production in Garden and Home. (2nd Ed.). Agriculture and Natural Resources Research Publisher. (In Farsi)
  14. Esmaeily, M. & Bandani, A. R. (2016). The effect of proteinaceous extract of triticale on α-amylase activity of tomato leaf miner, Tuta absoluta Meyrick (Lep.: Gelechiidae). Plant Pest Research, 6(1), 1-12.
  15. Esmaeily, M. & Bandani, A. R. (2015). Interaction between larval α-amylase of the tomato leaf miner, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) and proteinaceous extracts from plant seeds. Journal of Plant Protection Research, 55(3), 278-286.
  16. Franco, O. L., Rigden, D. J., Melo, F. R. & Grossi‐de‐Sá, M. F. (2002). Plant α‐amylase inhibitors and their interaction with insect α‐amylases. European Journal of Biochemistry, 269(2), 397-412.
  17. George, D., Ferry, N., Beak, E. and Gatehouse, A. (2008). Characterization of midgut digestive proteases from the maize stem borer, Busseola fusca. Pest Management Science, 64, 1151-1158.
  18. Ghadamyari, M., Hosseininaveh, V. & Sharifi, M. (2010). Partial biochemical characterization of α-and β-glucosidases of lesser mulberry pyralid, Glyphodes pyloalis Walker (Lep.: Pyralidae). Comptes Rendus Biologies,333(3), 197-204.
  19. Gholamzadeh Chitgar, M., Ahsaei, S. M., Ghadamyari, M., Sharifi, M., Hosseini Naveh, V. and Sheikhnejad, H. (2013). Biochemical characterization of digestive carbohydrases in the rose sawfly, Arge rosae Linnaeus (Hymenoptera: Argidae). Journal of Crop Protection, 2(3), 305-318.
  20. Haddi, K., Berger, M., Bielza, P., Cifuentes, D., Field, L. M., Gorman, K., Rapisarda, C., Williamson, M. S. & Bass, C. (2012). Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochemistry and Molecular Biology, 42(7), 506-513.
  21. Li, Y. K. & Byers, L. D. (1989). Inhibition of β-glucosidase by imidazoles. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 999, 227-232.
  22. Masoumzadeh, A., Hosseininaveh, V., Ghamari, M., Goldansaz, S. H., Allahyari, H. & Shojaei, A. (2014). Digestive α-amylase inhibition negatively affects biological fitness of the Indian meal moth, Plodia interpunctella (Hub.)(Lep: Pyralidae). Journal of Stored Products Research, 59, 167-171.
  23. Mehrabadi, M., Bandani, A. R. & Saadati, F. (2010). Inhibition of Sunn pest, Eurygaster integriceps, α-amylases by α-amylase inhibitors (T-αAI) from Triticale. Journal of Insect Science, 10(1), 179.
  24. Mehrabadi, M., Bandani, A. R., Mehrabadi, R. & Alizadeh, (2012). H. Inhibitory activity of proteinaceous a-amylase inhibitors from Triticale seeds against Eurygaster integriceps salivary a-amylases: Interaction of the inhibitors and the insect digestive enzymes. Pesticide Biochemistry and Physiology, 102, 220-228.
  25. Melo, F. R., Sales, M. P., Pereira, L. S., Bloch, C., Franco, O. L. & Ary, M. B. (1999). α-Amylase inhibitors from cowpea seeds. Protein and Peptide Lett, 6(6), 385-390.
  26. Mohammadzadeh, M. & Izadi, H. (2016). Enzyme activity, cold hardiness, and supercooling point in developmental stages of Acrosternum arabicum (Hemiptera: Pentatomidae). Journal of Insect Science, 16(1), 1-6.
  27. Mohammadzadeh, M., Bandani, A. R. & Borzoui, E. (2013). The effect of cereal seed extracts on amylase activity of the rose sawfly, Arge rosae Linnaeus (Hymenoptera: Argidae). Archives of Phytopathology and Plant Protection, 46(20), 2476-2485.
  28. Nakonieczny, M., Michalczyk, K. & Kędziorski, A. (2006). Midgut glycosidases activities in monophagous larvae of Apollo butterfly, Parnassius apollo ssp. frankenbergeri. Comptes Rendus Biologies, 329(10), 765-774.
  29. Pahlavan, R., Omid, M. & Akram, A. (2011). Energy use efficiency in greenhouse tomato production in Iran. Energy, 36(12), 6714-6719.
  30. Price, N. C. & Stevens, L. (1989). Fundamentals of Enzymology (Vol. 205). Oxford University Press.
  31. Ramzi, S. and Hosseininaveh, V. (2010). Biochemical characterization of digestive α-amylase, α-glucosidase and β-glucosidase in pistachio green stink bug, Brachynema germari Kolenati (Hemiptera: Pentatomidae). Journal of Asia-Pacific Entomology, 13(3), 215-219.
  32. Riseh, N. S., Ghadamyari, M. & Motamediniya, B. (2012). Biochemical characterisation of α-and β-glucosidases and α-and β-galactosidases from red palm weevil, Plant Protection Science, 48(2), 85-93
  33. Salek Ebrahimi, H. & Gharekhani, GH. H. (2014). Effect of generation and tomato plant cultivar on development of tomato leaf miner, Tuta absolata (Meyrick) (Lep.: Gelechiidae). Agricultural Pest Management, 1(2), 52-58.
  34. Saul, R., Molyneux, R. J. & Elbein, A. D. (1984). Studies on the mechanism of castanospermine inhibition of α-and β-glucosidases. Archives of Biochemistry and Biophysics, 230(2), 668-675.
  35. Sharifi, M., Ghadamyari, M., Moghadam, M. M. & Saiidi, F. (2011). Biochemical characterization of digestive carbohydrases from Xanthogaleruca luteola and inhibition of its α-amylase by inhibitors extracted from the common bean. Archives of Biological Sciences, 63(3), 705-716.
  36. Silva, G. A., Picanço, M. C., Bacci, L., Crespo, A. L. B., Rosado, J. F. & Guedes, R. N. C. (2011). Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Management Science, 67(8), 913-920.
  37. Singh, B., Kaur, T., Kaur, S., Manhas, R. K. & Kaur, A. (2016). Insecticidal potential of an endophytic Cladosporium velox against Spodoptera litura mediated through inhibition of alpha glycosidases. Pesticide Biochemistry and Physiology, 131, 46-52.
  38. Srinivasan, A., Giri, A. P., Harsulkar, A. M., Gatehouse, J. A. & Gupta, V. S. (2005). A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on podborer (Helicoverpa armigera) larvae. Plant Molecular Biology, 57(3), 359-374.
  39. Tabatabaei, P. R., Hosseininaveh, V., Goldansaz, S. H. & Talebi, K. (2011). Biochemical characterization of digestive proteases and carbohydrases of the carob moth, Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae). Journal of Asia-Pacific Entomology, 14(2), 187-194.
  40. Terra, W. R. & Ferreira, C. (1994). Insect digestive enzymes: properties, compartmentalization and function. Comparative Biochemistry and Physiology, 109, 1-62.
  41. Terra, W. R., Ferreira, C., Jordao, B. P. & Dillon, R. J. (1996). Digestive enzymes. In Lehane, M., Billingsley, P. (Eds.), Biology of the insect midgut (pp. 153-194). Springer.
  42. Titarenko, E. & Chrispeels, M. J. (2000). cDNA cloning, biochemical characterization and inhibition by plant inhibitors of the α-amylases of the Western corn rootworm, Diabrotica virgifera virgifera. Insect Biochemistry and Molecular Biology, 30(10), 979-990.
  43. Valencia, A., Bustillo, A. E., Ossa, G. E. & Chrispeels, M. J. (2000). α-amylases of the coffee berry borer (Hypothenemus hampei) and their inhibition by two plant amylase inhibitors. Insect Biochemistry and Molecular Biology, 30(3), 207-213.
  44. Vatanparast, M., Hosseininaveh, V., Nozari, J. & Sajadian, S. M. (2012). Digestive carbohydrases in the larva of the leopard moth, Zeuzera pyrina (Lep.: Cossidae). Iranian Journal of Plant Protection Science, 43 (1), 97-109. (in Farsi)
  45. Zeng, F. & Cohen, A. C. (2000). Comparison of α-amylase and protease activities of a zoophytophagous and two phytozoophagous Heteroptera. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 126(1), 101-106.
  46. Zibaee, A., Bandani, A. R. & Ramzi, S. (2009). Enzymatic properties of α-and β-glocusidases extracted from midgut and salivary glands of rice striped stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Comptes Rendus Biologies, 332(7), 633-641.