c3518cb17d976b8

پویایی قارچ Pyricularia oryzae در دو مرحلۀ بلاست برگی و گردن خوشه برنج، بر اساس ارزیابی ساختار ژنتیک جمعیت‌ها در سطح ‏های برگ، پنجه و مزرعه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه گیاه‌پزشکی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

2 استاد، گروه گیاه‌پزشکی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

3 استادیار، بخش تحقیقات گیاه‌پزشکی، مؤسسه تحقیقات برنج کشور، رشت

4 استادیار، گروه گیاه‌پزشکی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

5 دانشیار، گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی و منابع طبیعی دانشگاه گرگان

6 دانشجوی دکتری، گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی و منابع طبیعی دانشگاه گرگان

چکیده

به‌منظور ارزیابی پویایی قارچ Pyricularia oryzaeدر دو مرحلۀ بلاست برگی و گردن خوشه برنج، ساختار ژنتیکی جمعیت‌ها برای 142 جدایه در یک مزرعه و در سه سطح با استفاده از نشانگر مولکولی SSR و پنج ترکیب آغازگر موردبررسی قرار گرفت. جدایه‌های موردپژوهش از دو مرحلۀ بلاست برگی و بلاست گردن خوشه و در سه سطح جمع‌آوری شدند. در سطح اول جدایه‌های به‌دست‌آمده از دو مرحلۀ بلاست برگی و بلاست گردن خوشه از یک مزرعه، مورد تجزیه‌وتحلیل قرار گرفتند. سطح دوم به جدایه‌های دو جمعیت برگ و گردن خوشه که از پنجه‌های یک بوته برنج به‌دست‌آمده بودند، تعلق داشتند و سطح سوم بررسی را نیز جدایه‌های سه جمعیت جداشده از سه لکۀ مجزا در سطح یک برگ از یک بوته برنج به خود اختصاص دادند. بر اساس فنوگرام تنوع ژنتیکی رسم شده، تمامی 142 جدایۀ بررسی‌شده تشابه ژنتیکی 89 تا 100درصد را نشان دادند. برآوردهای ژنتیکی در سه سطح موردبررسی به ترتیب میانگین جریان ژنی 62/57، 68/10 و 783/4 را بین جدایه‌های بررسی‌شده نشان دادند. ردیابی ایدیومورف‌های تیپ آمیزشی 142 جدایه با روش Multiplex PCR نشان داد که همۀ جدایه‌ها دارای ایدیومورف MAT1-1 هستند. این برآمدنشان‌دهندۀ عدم رخداد تولیدمثل جنسی و بیان‌کنندۀ این است که تکثیر جمعیت‌های قارچ در سطح مزارع برنج در استان گیلان فقط به صورت غیرجنسی رخ می‌دهد. تنوع ژنتیکی کم و شباهت ژنتیکی زیاد جمعیت‌های عامل بیماری بلاست برنج در استان گیلان نیز این استنتاج را تایید می‌کنند.

کلیدواژه‌ها


عنوان مقاله [English]

Dynamic of Pyricularia oryzae at the two stages, leaf, and panicle neck blast based on the assessment of population structure at leaf, tiller, and field levels

نویسندگان [English]

  • Fatemeh Salimi 1
  • Mohammad Javan Nikkhah 2
  • Fereydon Padasht Dehkayi 3
  • Alireza Alizadeh 4
  • Hasan Soltanloo 5
  • Sareh Yosefirad 6
1 Ph. D. Candidate, Department of Plant Protection, College of Agriculture and Natural Resources University of Tehran, Karaj 31587-77871, Iran
2 Professor, Department of Plant Protection, College of Agriculture and Natural Resources University of Tehran, Karaj 31587-77871, Iran
3 Assistant Professor, Department of Plant Protection, Iranian Rice Research Institute, Rasht, Iran
4 Assistant Professor, Department of Plant protection, Azarbaijan Shahid Madani University, Tabriz, Iran
5 Assocaite Professor, Department of Agronomy and Plant Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
6 Ph. D. Candidate, Department of Agronomy and Plant Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

In order to assess the dynamic of Pyricularia oryzae at leaf and panicle neck blast stages, population genetic structures of the 142 isolates were investigated in a rice field and at three levels using SSR markers and five primer pair combinations. All the isolates were collected from the two-leaf and panicle stages at three levels. In the first level, isolates collected from leaf and panicle neck blast stages in the rice field were analyzed. In the second level, isolates belonged to the leaf and panicle neck populations were collected from tillers of the same rice hill and analyzed. In the third level, the ienvestigated isolates belonged to three populations and were obtained from three distinct leaf spots from the same rice leaf in a rice tiller. Based on constructed dendrogram for all of the 142 isolates, genetic similarity varied from 89 to 100% among the isolates. Population genetic estimations at the three studied levels showed that the amount of gene flow was 57.62, 10.68, and 4.783, respectively between the isolates. Detection of mating type idiomorphs of the studied isolates using multiplex PCR showed that all the isolates had Mat1-1 idiomorph. This indicates the absence of sexual reproduction within the M. oryzae populations in rice fields in Guilan province and the fungus reproduces only in an asexual way. Low genetic variation and high genetic similarity among the populations of the causal agent of rice blast disease in Guilan province confirm this result.

کلیدواژه‌ها [English]

  • Gene flow
  • Mating type
  • Molecular markers
  • Rice blast
Bonman, J. M., Estrada, B. A. & Bandong, J. M. (1989). Leaf and neck blast resistance in tropical lowland rice cultivars. Plant Disease, 73, 388-390.
Chen, D., Zeigler, R. S., Leung, H. & Nelson, R. J. (1995). Population structure of Pyricularia grisea at two screening sites in the Philippines. Phytopathology, 85, 1011-1020.
Couch, B. C. & Khohn, M. L. (2002). A multilocus gene genealogy concordant with host preference indicate segregation of a new species, Magnaporthe oryzae from Magnaporthe grisea. Mycologia, 94, 683-693.
Don, L. D., Tosa, Y., Nakayashiki, H. & Mayama, S. (1999). Population structure of the rice blast fungus in Vietnam. Annals of the Phytopathological Society of Japan, 65, 475-479.
Ellis, M. B. (1971). Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, 608 p, Kew, England.
Ellis, M. B. (1976). More Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, 507 p, Kew, England.
Estoup, A. & Guillemaud, T. (2010). Reconstructing routes of invasion using genetic data: why, how and so what?. Molecular Ecology, 19, 4113-4130.
Fisher, R. A. (1930). The Genetical Theory of Natural Selection (1st ed.). Clarendon Press, Oxford.UK.
George, M. L. C., Nelson, R. J., Zeigler, R. S. & Leung, H. (1998). Rapid population analysis of Magnaporthe grisea by using rep-PCR and endogenous repetitive DNA sequences. Phytopathology, 88, 223-229.
Ghatak, A., Willocquet, L., Savary, S. & Kumar, J. (2013). Variability in aggressiveness of rice blast (Magnaporthe oryzae) isolates originating from rice leaves and necks: a case of pathogen specialization?. PLoS ONE, 8(6), e66180.
Hemmati, R., Javan-Nikkhah, M., Okovvat, S. M. & Ghazanfari, K. (2005). Study on genetic diversity of Magnaporthe grisea using PCR and determination of the mating type alleles distribution in Mazandaran province, Iran. Communications in Agricultural and Applied Biological Sciences,70(3), 311-313.
Javan-Nikkhah, M., McDonald, B. A. & Banke, S. (2004). Genetic structure of Iranian Pyricularia grisea population based on rep-PCR fingerprinting. European Journal of Plant Pathology, 110, 909-919.
Kang, S., Chumley, F. G. & Valent, B. (1994). Isolation of the mating-type genes of the phytopathogenic fungus Magnaporthe grisea using genomic subtraction. Genetics, 138, 289-296.
Keller, S. M., McDermott, J. M., Pettway, R. E., Wolfe, M. S. & McDonald, B. A. (1987). Gene flow and sexual reproduction in the wheat glume blotch pathogen Phaeesospharia nodorum (anamorph Stagonospora nodorum). Phytopathology, 87, 353-358.
Kumar, J., Nelson, R. J. & Zeigler, R. S. (1999). Population structure and dynamics of Magnaporthe grisea in the Indian Himalayas. Genetics, 152, 971-984.
Levy, M., Romao, J., Marchetti, M. A. & Hamer, J. E. (1991). DNA fingerprinting with a dispersed repeated sequence resolves pathotype diversity in the rice blast fungus. Plant Cell, 3, 95-102.
Liu, D., Coloe, S., Baird, R. & Pedersen, J. (2000). Rapid mini-preparation of fungal DNA for PCR. Journal of Clinical Microbiology, 38, 471.
McDonald, B. A. & Linde, C. (2002). The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica, 124, 163-180.
McDonald, B.A. (1997). The population genetics of fungi. Tools and techniques. Phytopathology, 87, 448-453.
Mckenzie, E. H. C., Park, D., Bellgard, S. E. & Johnston, P. R. (2010). A new species of Pyricularia (Hyphomycetes) on cortoderia (Poaceae) in Newzealand. Mycosphere, 1, 223-228.
Moumeni, A. & Leung, H. (2003). Genetic and molecular dissection of blast resistance in rice using RFLP, simple repeats and defense-related candidate gene markers. Iranian Journal of Biotechnology, 1, 47-54
Mousanejad, S., Mohammadi Goltapeh, E. & Javan-Nikkhah, M. (2004). Study on the fertility status and the distribution of the mating type alleles in Magnaporthe grisea, causal agent of rice blast, in Guilan province. Iranian Journal of Plant Pathology, 40, 201-220.
Noguchi, M.T., Yasuda, N. & Fujita, Y. (2007). Fitness characters in parasexual recombinants of the rice blast fungus, Pyricularia oryzae. Japan Agricultural Research Quarterly, 41, 123-131.
Ou, S. H. (1985). Rice Disease (2nd ed.). Commonwealth Agricultural Bureaux. 308 pp.
Peakall, R. & Smouse P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288-295.
Piotti, E., Rigano, M. M., Rodino, D., Rodolfi, M., Castiglione, S., Picco, A. M. & Sala, F. (2005). Genetic structure of Pyricularia grisea (Cooke) Sacc. isolates from Italian paddy fields. Journal of Phytopathology, 153, 80-86.
Safari motlagh, M. R., Hbibi, F. & Ebadi, A. A. (2015). Genetic diversity of Pyricularia grisea, the causal agent of rice blast by SSR. Acta Scientiarum Polonorum., Hortorum Cultus, 14(1), 15-28.
Salimi, F., Javan-Nikkhah, M., Padasht Dehkayi, F. & Alizadeh, A. (2014). Genetic diversity of Magnaporthe oryzae isolates at the leaf and panicle neck stages in the same rice field. 21st Iranian Plant Protection Cogress. August, 23-26, Urmia University, Urmia, Iran. (in Farsi)
Sharif, Gh. & Ershad, J. (1966). A list of infecting fungi on crops, trees and shrubs in Iran. Institute of Pest and Disease Research of Iran, Tehran, Iran. (in Farsi)
Shannon, C. E. & Weaver, W. (1949). The mathematical theory of communication. The University of Illinois. Urbana, Chicago, London. pp. 3–24.
Silva, G. B., Prabhu, A. S., Filippi, M. C. C., Trindade, M. G., Araújo, L. G. & Zambolim, L. (2009). Genetic and phenotypic diversity of Magnaporthe oryzae from leaves and panicles of rice in commercial fields in the State of Goiás, Brazil. Tropical Plant Pathology, 34(2), 77-86.
Suzuki, F., Arai, M. & Yamaguchi, J. (2006). DNA fingerprinting of Pyricularia grisea by rep-PCR using single primers designed from the terminal inverted repeat of each of the transposable elements Pot2 and MGR586. Journal of General Plant Pathology, 72, 314-317.
Suzuki, F., Arai, M. & Yamaguchi, J. (2007). Genetic analysis of Pyricularia grisea population by rep-PCR during development of resistance to scytalone dehydratase inhibitors of melanin biosynthesis. Plant Disease, 91, 176-184.
Suzuki, F., Fuji, S., Koba, A., Nakajima, T. & Arai, M. (2012). Analysis of genetic diversity and population structure in Pyricularia oryzae collected from western Japan using SSR markers. Japanese Journal of Phytopathology, 78, 10-17.
Tharreau, D., Fudal, I., Andriantsimialona, D., Santoso, U., Tami, D., Fournier, E., Lebrun, M. H. & Notteghem, J. L. (2009). World population structure and migration of the rice blast fungus, Magnaporthe oryzae. In: G. L. Wang, B. Valent, (eds.) Advances in genetics, genomics and control of rice blast disease. (pp. 209-215).Dordrecht, the Netherlands, Springer.
Tosa, Y., Osue, J., Oh, H. S., Nakayashiki, H., Mayama, S. & Leong, S. A. (2005). Evolution of an avirulence gene, AVR 1-C O 3 9, concomitant with the evolution and differentiation of Magnaporthe oryzae. Molecular Plant Microbe Interactions, 18: 1148-1160.
Tredway, L., Stevenson, P. K. L. & Burpee, L. L. (2005). Genetic Structure of Magnaporthe grisea populations associated with St. augustinegrass and tall fescue in Georgia. Phytopathology, 95(5), 463-471.
Xue, M., Yang, J., Li, Z., Hu, S., Yao, N. & Dean, R. A. (2012). Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae. PLoS Genetics, 8, e1002869.
Zarrinnia, V., Javan-Nikkhah, M., Zamanizadeh, H. R., Mehrabi, R. & Khosravi, V. (2011). An investigation of the pathogenicity characteristics of Magnaporthe grisea isolates collected from different host plants from the family Poaceae and race determination of the pathogenic isolates. Iranian Journal of Plant Protection, 42, 179-190. (in Farsi)
Zeighler, R. S., Thome, J., Levy, M. & Correa-Victoria, F. (1994). Linage exclusion: A proposal for linking blast population analysis to resistance breeding. In: R. S. Zeighler, S. A. Leong and P. S. Teng. Rice Blast Disease. (pp. 267-292). Commonwealth Agricultural Bureau International, Wallingford, UK.