c3518cb17d976b8

ارزیابی مدل شبکۀ عصبی مصنوعی GMDH در برآورد پراکنش مکانی کنه‌های خانوادۀ Laelapidae (Acari, Mesostigmata) در منطقۀ شاهرود استان سمنان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 استادیار، گروه ریاضی محض، دانشکده ریاضی، دانشگاه صنعتی شاهرود، شاهرود، ایران

3 دانشجوی دکتری، گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران

4 دانشجوی سابق کارشناسی ارشد، گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، شاهرود، ایران

5 گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، شاهرود،

چکیده

این پژوهش به‌منظور برآورد پراکندگی مکانی کنه‌های خانوادۀ Laelapidae در منطقۀ شاهرود با به‌کارگیری شبکۀ عصبی مصنوعی انجام شد. داده‌های مربوط به تراکم جمعیت این کنه از زیستگاه‌های گوناگون منطقۀ شاهرود در سال 1394 به دست آمدند. در این پژوهش از متغیرهای طول و عرض جغرافیایی به‌عنوان متغیرهای ورودی و از دگرگونی‌های جمعیت کنه‌های خانوادۀ Laelapidae به‌عنوان متغیر خروجی استفاده شد. شبکۀ مورداستفاده از نوع GMDH بهینه‌شده با الگوریتم ژنتیک بود. برای ارزیابی توانایی شبکه‌های عصبی مورداستفاده در پیش‌بینی توزیع از سنجش آماری مؤلفه‏هایی مانند واریانس، توزیع آماری و میانگین میان اندازه‌های پیش‌بینی‌شدۀ مکانی به‌وسیلۀ شبکه عصبی و اندازه‌های واقعی آن‌ها استفاده شد. نتیجه‏ها نشان دادند که در فازهای آموزش و آزمایش میان اندازه‌های ویژگی‌های آماری واریانس، توزیع آماری و میانگین مجموعه داده‌های واقعی و پیش‌بینی‌شدۀ مکانی این خانواده به‌وسیلۀ شبکۀ عصبی GMDH، تفاوت معنی‌داری وجود نداشت. نقشه‌های ترسیم‌شده نشان داد که توزیع کنه‌های این خانواده تجمعی است. نقشه‌های به‌دست‌آمده از شبکه‌های عصبی مصنوعی می‌توانند به برنامه‌ریزان جهت به‌کارگیری برنامه‌های مهار آفت‌ها یاری کنند به‌ویژه اگر نقشه‌ها با مختصات جغرافیایی هر مکان همانندی داشته باشند. به‌طوری‌که تمرکز بیشتر مهار به منطقه‏هایی معطوف شود که تراکم این کنه‌های شکارگر کمتر است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of GMDH artificial neural network model for predicting the spatial distribution of the family Laelapidae (Acari, Mesostigmata) in Shahrood region, Semnan province

نویسندگان [English]

  • Masoud Hakimitabar 1
  • Seyed Reza Hejazi 2
  • Alireza Shabaninejad 3
  • Parisa Ghorani 4
  • Elnaz Fadaei 5
1 Assistant Professor, Department of Plant Protection, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
2 Assistant Professor, Faculty of Mathematics, Shahrood University of Technology, Shahrood, Iran
3 Ph. D. Candidate, Department of Plant Protection, College of Agriculture, Razi Kermanshah University, Kermanshah, Iran
4 Former M. Sc. Student, Department of Plant Protection, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
5 Department of Plant Protection, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
چکیده [English]

This study aimed to predict the population of Laelapid mites in Shahrood region using an artificial neural network. The data of this family were obtained in the year 2015. In this model, the variables sampling date, longitude and latitude as the input variables, and the population of Laelapid mites were used as the output variable. The network type used was GMDH neural network that was optimized by genetic algorithms. To evaluate the ability of GMDH neural networks to predict the distribution, statistical comparison parameters such as mean, variance, statistical distribution, and coefficient determination of linear regression between predicted values and actual values were used. Results showed that in training and test phases of GMDH neural network, there was no significant effect between variance, mean, and statistical distribution of actual values and predicted values. Our map showed the patchy distribution of these predatory mites. Maps obtained from artificial neural networks help program planners to use the pest control programs, particularly if maps coordinate with geographical conformity of each location. Therefore, control was focused on areas with decreased densities of these predatory mites.

کلیدواژه‌ها [English]

  • Cumulative dispersion
  • GMDH artificial neural network
  • Spatial distribution
  1. Amanifard, N., Nariman-Zadeh, N., Borji, M., Khalkhali, A. & Habibdoust, A.(2007). Modelling and Pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms. Energy Conversion and Management,15, 32-40.
  2. Atashkari, K., Nariman-Zadeh, N., Gölcü, M., Khalkhali, A. & Jamali, A. (2010). Modelling and multi–objective optimization of a variable valve–timing spark–ignition engine using polynomial neural networks and evolutionary algorithms. Energy Conversion and Management, 48, 29-41.
  3. Obrycki, J. J. & Kring, T. J. (1998). Pradaceus Coccinellidae in biological control. Annual Review of Entomology, 43, 295-321.
  4. Craverner, T. L. & Roush, W. B. (2013). Improving neural network prediction of amino acid levels in feed ingredients. Journal of Applied Poultry Research, 78, 983-991.
  5. Goel, P. K., Prasher, S. O., Patel, R. M., Landry, J. A., Bonnell, R. B. & Viau, A. A. (2003). Classification of hyper spectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn. Computers and Electronics in Agriculture, 39, 67-93.
  6. Hakimitabar, M., Shabaninejad, A., Saboori, A. & Shmas, M. (2017). Evaluation of Artificial Neural Network for determining distribution pattern of ascid family (Acari, Mesostigmata) in Damghan city, Semnan province. Journal of Entomological Society of Iran, 37(3), 361-368.
  7. Irmak, A., Jones, J. W., Batchelor, W. D., Irmak, S., Boote, K. J. & Paz, J. (2006). Artificial neural network model as a data analysis tool in precision farming. Transactions of the American Society of Agricultural and Biological Engineers, 49, 2027-2037.
  8. Joharchi, O. (2011). Funistic Survey of Family Laelapidae (Acari, Mesostigmata) in Tehran province. Ph.D. Thesis. Faculty of Agriculture, Islamic Azad University, Science and Research Branch, Tehran.
  9. Krantz, G. W. & Walter, D. E. (Eds). (2009). A manual of acarology. 3rd ed. 807 pp. Texas Technology University Press.
  10. Makarian, H. (2008). Investigation of spatial and temporal dynamic of weed seed bank and seedling
    populations
    and its effect on saffron (Crocus sativus L.) leaf dry weight under different weed
    management conditions
    . Ph.D. Thesis. Faculty of Agriculture, Ferdowsi University of Mashhad, Iran.
  11. Mittal, G. S. & Zhang, J. (2010). Prediction of temperature and moisture content of frankfurters during thermal processing using neural network. Journal of Applied Poultry Research, 70, 13-24.
  12. Nariman–Zadeh, N., Darvizeh, A. & Ahmad–Zadeh, G. R. (2013).Hybrid genetic design of GMDH–type neural networks using singular value decomposition for modelling and prediction of the explosive cutting process. Energy Conversion and Management,217, 79-90.
  13. Shabaninejad, A. & Tafaghodiniya, B. (2017a). Automatic clustering of data from sampling and evaluationg of neuro–fuzzy network tofor estimateinge the distribution of Bemisia. Tabaci (Hem.,Aleyrodidae). Journal of Entomolological Society of Iran, 37, 91-105.
  14. Shabaninejad, A. & Tafaghodinia, B. (2017b). Evaluation of the geostatistical and artificial neural network methods to estimate the spatial distribution of Tetranychus urticae (Acari, Tetranychidae) in Ramhormoz cucumber fields. Journal of Applied Entomology and Pathology, 85(1), 21-29.
  15. Shabaninejad, A. & Tafaghodinia, B. (2016). Evaluation of the ability of LVQ4 artificial neural network model for predicting spatial distribution pattern of Tuta absoluta in Ramhormoz, Iran. Journal of Entomolological Society of Iran, 36, 195-204.
  16. Shabaninejad, A., Tafaghodinia, B. & Zandi-Sohani, N. (2017a). Evaluation of geostatistical method and hybrid artificial neural network with imperialist competitive algorithm for predicting distribution pattern of Tetranychus urticae (Acari, Tetranychidae) in cucumber field of Behbahan, Iran. Persian Journal of Acarology, 6(4), 315-328.
  17. Shabaninejad, A., Tafaghodinia, B. & Zandi-Sohani, N. (2017b). Hybrid neural network With genetic algorithms for predicting distribution pattern of Tetranychus urticae (Acari., Tetranychidae) in cucumbers field of Ramhormoz. Persian Journal of Acarology, 6, 53-62.
  18. Vakil-Baghmisheh, M. T. & Pavešic, N. (2003). Premature clustering phenomenon and new training algorithms for LVQ. Pattern Recognition, 36(5), 1901-1921.
  19. Walter, D. E. & Proctor, H. C. (1999). Mites, Ecology, Evolution, and Behaviour. Springer, Dordrecht, the Netherlands, 494.
  20. Chon, T. S., Park, Y. S., Kim, J. M., Lee, B. Y., Chung, Y. J. & Kim, Y. (2000). Use of an artificial neural network to predict population dynamics of the Forest–Pest pine needle gall midge (Diptera: cecidomyiida). Environmental Entomology, 29(6), 1208-1215.
  21. Yuxin, M., Mulla, D. J. & Pierre, C. R. (2006). Identifying important factors influencing corn yield and grain quality variability using artificial neural networks. Precision Agriculture, 7(2), 117-135.
  22. Zhang, Y. F. & Fuh, J. Y. H. (1998). A neural network approach for early cost estimation of packaging products. Computers and Industrial Engineering, 34(2), 433-50.
  23. Zhang, W. J., Zhong, X. Q. & Liu, G. H. (2008). Recognizing spatial distribution patterns of grassland insects, neural network approaches. Stochastic Environmental Research and Risk Assessment, 22, 207-216.