c3518cb17d976b8

تنوع ژنتیکی جمعیت‌های مختلف کرم گلوگاه انار Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae) با استفاده از DNA میتوکندریایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاهپزشکی دانشکده کشاورزی دانشگاه تهران، کرج، ایران

2 هئت علمی

3 گروه گیاهپزشکی، پردیس کشاورزی و منابع دانشگاه تهران،کرج، ایران.

4 عضو هیات علمی

چکیده

کرم گلوگاه انار، Ectomyelois ceratoniae، مهم‌ترین آفت انار در ایران و از مؤثر‌ترین عامل‏های تهدیدکنندۀ صادرات این محصول محسوب می‌شود ولی پژوهش‌های کمی روی تنوع و ساختار ژنتیکی جمعیت‌های آن در کشور انجام شده است. ازاین‌روی به‌منظور افزایش آگاهی از ساختار و تنوع ژنتیکی جمعیت‌های این آفت، انارهای آلودۀ رقم‏های مختلف از دوازده استان کشور طی سال‌های 1395 و 1396 جمع‌آوری و با استفاده از بخشی از ژن DNA میتوکندریایی، سیتوکروم اکسیداز I ((COI مؤلفه‌های تنوع ژنتیکی بررسی شد. همچنین شبکۀ هاپلوتیپی و درخت تبارزایی با روش بیشینۀ درست‌نمایی (Maximum Likelihood) ترسیم شد. در این پژوهش، تعداد شش هاپلوتیپ به‌دست آمد. هاپلوتیپ یک که در بین تمام جمعیت‌ها مشترک بود، می‌تواند به‌عنوان هاپلوتیپ اجدادی معرفی شود که سایر هاپلوتیپ‌ها از آن تکامل یافته‌اند. این هاپلوتیپ با یک جهش به سایر هاپلوتیپ‌ها متصل و شکل ستاره‌ای را در شبکه هاپلوتیپی تشکیل داده است. نتیجه‏های گروه‌بندی جمعیت‌های جغرافیایی نشان می‌دهند ناحیۀ مرکزی کشور، تنوع هاپلوتیپی کمتری نسبت به ناحیه‏های شمال و جنوب ایران دارد. تنوع ژنتیکی درون جمعیتی بالا (15/99 درصد) در مقابل تنوع کم ژنتیکی بین جمعیت‌ها (05/0P>، 13/2- درصد) حاصل از آزمون AMOVA و سطح بالای اشتراک هاپلوتیپی در شبکه، نشان می‌دهد که ساختار ژنتیکی مشخصی بین جمعیت‌ها وجود ندارد. در آزمون منتل ارتباطی بین فاصلۀ ژنتیکی و جغرافیایی و در آزمون منتل جزئی اثر معنی‌دار رقم بر بروز اختلاف‏های ژنتیکی به دست نیامد.چنین ساختار ژنتیکی می‌تواند حاصل سازگاری انار با خرداقلیم‌های مختلف، کشت رقم‏های متداول تجاری و برقراری اکوسیستم زراعی یکنواخت و انتقال محصول توسط انسان باشد که منجر به برقراری جریان ژنی زیاد و کاهش اختلاف‏های ژنتیکی حتی در فاصله‏های جغرافیایی گسترده می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Genetic diversity of different populations of the pomegranate fruit moth, Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae) using the mitochondrial DNA

نویسندگان [English]

  • Samaneh Malek Shahkouyi 1
  • Jamasb Nozari 2
  • Vahid Hosseini naveh 3
  • Seyed Hossein Goldansaz 4
1 Plant Protection Depatment, College of Agriculture and Natural Resources University of Tehran,Karaj, Iran.
2 Plant Protection Depatment, College of Agriculture and Natural Resources University of Tehran,Karaj, Iran.
3 Plant Protection Depatment, College of Agriculture and Natural Resources University of Tehran,Karaj, Iran.
4 Plant Protection Depatment, College of Agriculture and Natural Resources University of Tehran,Karaj, Iran.
چکیده [English]

Carob moth, Ectomyelois ceratoniae, is the most important pest of pomegranate in Iran and is one of the most effective threats to the export of this product, but only a few studies have been done on the diversity and genetic structure of its populations.Therefore, in order to increase knowledge about the structure and genetic diversity of this pest populations, infested pomegranates were collected from 12 provinces of the country during 2016 and 2017 and genetic diversity components were investigated using a part of the mitochondrial DNA gene, cytochrome oxidase I (COI). Also, the haplotypic network and the phylogenetic tree was drawn using the maximum likelihood method. In the present study, six haplotypes were obtained. The first haplotype (H1) was common in all populations, which can be considered as the ancestral haplotype so that other haplotypes have been evolved from it. This haplotype is connected to other haplotypes with a mutation and forms a star-like shape in the haplotypic network. Results of the grouping populations indicate that the northern part of Iran has the most diversity of haplotypes in comparison to the central and southern parts, which can be related to native cultivars, genetic diversity of cultivars, and natural habitat of Pomegranates in this area. The adaptation of pomegranates to different micro-climates, development of commercial cultivation of traditional varieties, and the role of the human in product transformation lead to high gene flow and genetic differences reduction even at wide geographical distances.

کلیدواژه‌ها [English]

  • Cytochrome oxidase I
  • Haplotype
  • population
Ahmadi, K., Gholizadeh, H., Ebadzadeh, H., Hatami, F., Hosseinpoor, R., Abdshah, H., Rezaii,
M. M. & Fazli-Estabragh, M. (2016). Agricultural Statistics, Horticultural crops. Ministry of Agriculture, 3, 1-239. (in Farsi)
Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A. & Saunders, N. C. (1987). Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18, 489-522.
Brower, A. V. Z. (1994). Rapid morphological radiation and convergence among races of the butterfly Heliconius eratoinferred from patterns of mitochondrial DNA evolution. In: Proceedings of the National Academy of Sciences, 91, 6491-6495.
Behzadi Shahrbabaki, H. (1998). Distribution and diversity of pomegranate varieties in Iran. Agriculture Education Publishing, Ministry of Agriculture. Organization of research, education and extension of agriculture, deputy of education and equipping of human resources. Karaj, Iran. (in Farsi)
Brower, V. Z. & DeSalle, R. (1994). Practical and Theoretical Considerations for Choice of a DNA Sequence Region in Insect Molecular Systematics, with a Short Review of Published Studies Using Nuclear Gene Regions. Entomological Society of America.87, 701-716.
Chen, M. H. & Dorn, S. (2010). Microsatellites reveal genetic differentiation among populations in an insect species with high genetic variability in dispersal, the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Bulletin of Entomological Research, 100, 75-85.
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol, 3, 294-299.
Excoffier, L. & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 10, 564-567.
Glozer, K. & Fergosun, L. (2011). Pomegranate production in Afghanistan, UC Davis. College of Agricultural and Environmental sciences. Pp 1-32.
Goldansaz, S. H., Talaei, L., Poorjavad, N. & Dehghani, Y. H. (2012). Inhibition of carob moth damage using Ferula assafoetida essential oil in pomegranate orchards of Iran. In: P. Melgarejo Valero (Eds.), Options Mediterraneennes. Serie A, Seminaires Méditerranéens (II) International Symposium on the Pomegranate, October 19–21, 2011, Madrid, Spain, 103, 129-131.
Goodisman, M. D., Matthews, R. W. & Crozier, H. (2001). Hierarchical genetic structure of the introduced wasp Vespula germanica in Australia, Molecular Ecology, 2001, 1423-1432.
Goor, A. & Liberman, J. (1956). The Pomegranate. pp. 5–57. J. Atsmon (ed.), State of Israel Ministry of Agriculture, Agr. Publ. Section, Tel Aviv.
Hall, Th. A. (1999). Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Oxford university press. Nuleic Acids Symposium, 41, 95-98.
Harrison, R. G. (1989). Animal mitochondrial DNA as a genetic marker in population and evolutionary biology.  Rends in Ecology & Evolution. 4, 6-11. doi: 10.1016/0169-5347(89)90006-2.
Heinrich, C. (1956). American moths in the subfamily Phycitinae. United States Natural Museum Bulletin, 207, 1-581.
Hoseini, S. A., Goldansaz, S. H., Sadeghhasani, S. & Mousavi, S. G. (2014). A field screening of 10 high yield pomegranate cultivars for resistance to the carob moth, Ectomyelois ceratoniae, in the climate condition of Karaj, Alborz, Iran. Paper presented at: 21th Iranian Plant Protection, Congress; Urmia, Iran.
Kashkuli, A. & Eghtedar, E. (1975). Bilogie und€okologie von Spectrobates ceratoniae (Lep.: Pyralidae) in Der Provinz Fars. Entomol et Phytopathologie Appl, 32, 21-41.
Kirk, H., Dorn, S. & Mazzi, D. (2013). Molecular genetics and genomics generate new insights into invertebrate pest invasions. Evolutionary Applications, 6, 842-856.
Kremer, A., Ronce, O., Robledo-Arnuncio, J. J., Guillaume, F., Bohrer, G., Nathan, R., Bridle, J. R., Gomulkiewicz, R., Klein, E. K., Ritland, K., et al. (2012). Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecology Letters, 15, 378-392.
Lavagnini, T. C., Morales, A. C. &Freitas, S. (2015). Population genetics of Chrysoperla externa (Neuroptera: Chrysopidae) and implications for biological control. Brazilian Journal of Biology, http://dx.doi.org/10.1590/1519-6984.02014.
Leit, J. W. & Bryant, D. (2015). POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 1-7. doi: 10.1111/2041-210X.12410.
Librado, P. & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451-1452.
Mayr, E. & Ashlock, P. D. (1991). Principles of systematic Zoology. McGraw-Hill.
Miller, N. J., Birley, A. J., Overall, A. D. J. & Tatchell, G. M. (2003). Population genetic structure of the lettuce root aphid, Pemphigus bursarius (L.), in relation to geographic distance, gene flow and host plant usage. Heredity, 91, 217-223.
Morland, G. (2015). The morphology and ecology of the Carob moth (Ectomyelois ceratoniae) (Zeller) in citrus orchards of the Western Cape, South Africa. M. Sc. thesis of Sciences Stellenbosch University, 1-123.
Mozaffarian, F., Mardi, M., Sarafrazi, A. & Ganbalani, G. N. (2007). Assessment of geographic and host-associated population variations of the carob moth, Ectomyelois ceratoniae, on pomegranate, fig, pistachio and walnut, using AFLP markers. Journal of Insect Science, 8, 1-9.
Nei, M. (1973). Analysis of gene diversity in subdivided populations. In:Proceedings of the National Academy of Sciences, Dec; 70, 12, 3321-3323.
Noorbakhsh, S., Alizadeh, B. H., Farazmand, H. & Saber, M. (2017). Comparative study of the sex pheromone of carob moth, Apomyelois ceratoniae (Zeller, 1839) (Lepidoptera: Pyralidae) from four regions of Iran using headspace solid phase micro extraction-gas chromatography/mass spectrometry. Turkiye Entomoloji Dergisi-Turkish Journal of Entomology, 41, 1, 61-73.
Puillandre, N., Dupas, S., Dangles, O., Zeddam, J. L., Capdevielle-Dulac C, et al. (2008). Genetic bottleneck in invasive species: the potato tuber moth adds to the list. Biological Invasions, 10, 319-333.
Ren, Y. & Yang, L. (2016). Ectomyelois Heinrich, 1956 in China, with descriptions of two new species and a key (Lepidoptera, Pyralidae, Phycitinae). Zookeys, 559, 125-137.
Roe, A. D. & Sperling, F. A. (2007). Population structure and species boundary delimitation of cryptic Dioryctria moths: an integrative approach. Molecular Ecology, 16, 17, 3617-3633. DOI: 10.1111/j.1365-294X.2007.03412.x.
Shakeri, M. (2004). A review on investigations on pomegranate neck worm in Iran, pp. 18-30. In: A proceeding on evaluation of finding and current problems associated with Spectrobates ceratoniae management in pomegranate Ministry of Jihad-e-agriculture, organization of research and education, Yazd agriculture and natural resources research center, Iran.
Simon, Ch., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994). Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. Annals of the Entomological Society of America, 87, 651-701, https://doi.org/10.1093/aesa/87.6.651.
Sridhar, J., Chinna Babu Naik, V., Ghodke, A., Kranthi, S., Kranthi, K. R., Singh, B. P., Choudhary, J. S. & Krishna, M. S. R. (2016). Population genetic structure of cotton pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) using mitochondrial cytochrome oxidase I (COI) gene sequences from India, Mitochondrial DNA Part A, DOI: 10.1080/24701394.2016.1214727.
Sperling, F. A. H. (1993). Mitochondrial DNA phylogeny of the Papilio machaon species group (Lepidoptera: Papilionidae). The Memoirs of the Entomological Society of Canada, 65, 233-242.
Tajima, F. (1989). Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics. 123, 585-595.
Talebi Baddaf, M., Sharifi Neia, B. & Bahar, M. (2003). Analysis of genetic diversity in pomegranates cultivars of Iran, using Random Amplified Polymorphic DNA (RAPD markers). In: Proceedings of 3rd National Cong. Biotech., Mashad, Iran. 2, 343-345.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729.
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876-82.
Torriani, M. V. G., Mazzi, D., Hein, S. & Dorn, S. (2010). Structured populations of the oriental fruit moth in an agricultural ecosystem. Molecular Ecology, 19, 2651-2660.
Yang, X. M., Sun, J. T., Xue, X. F., Li, J. B. & Hong, X. Y. (2012). Invasion genetics of the western flower thrips in China: evidence for genetic bottleneck, hybridization and bridgehead effect. PLoS ONE, 7 (4), e34567.
Yoshiyasu, Y. & Kitatsuji, R. (2008). Discovery of Ectomyelois ceratoniae (Lepidoptera: Pyralidae) in a peach orchard in Japan. Scientific Reports of Kyoto Prefectural University. Life and Environmental Sciences, 60, 31-37.
Zamani, Z., Sarkhosh, A., Fatahi, R. & Ebadi, A. (2007). Genetic relationships among pomegranate genotypes studied by fruit characteristics and RAPD markers. The Journal of Horticultural Science and Biotechnology, 82, 11-18.
Ziaaddini, M., Goldansaz, S. H., Ashouri, A. & Ghasempour, A. (2010). A comparison of the calling behavior and some biological characters of three different geographic populations of Ectomyelois ceratoniae under laboratory conditions. Iranian Journal of Plant Protection Science, 41, 81-93. (in Farsi)
Ziaaddini, M., Goldansaz, S. H., Ashouri, A. & Ghasempour, A. (2011). Study of Sexual Behavior and Comparison of Mutual attraction of Male to Females in Three geographical Populations of the Pomegranate neck worm under Laboratory Conditions. Journal of Iranian Plant Protection Sciences, 42, 151-161. (in Farsi)