c3518cb17d976b8

بررسی اثر فلاونوئیدها در القای مقاومت علیه پوسیدگی طوقه و ریشه گیاه لوبیا ناشی از Rhizoctonia solani

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشیار، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 استادیار، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

در این پژوهش، برای تعیین سطوح مقاومت رقم‏های لوبیا به Rhizoctonia solani عامل پوسیدگی طوقه و ریشه آزمون بیماری‌زایی به دو روش دیسک برگی در شرایط آزمایشگاه و مایه‌زنی گیاه‏چه‌ها در گلخانه انجام شد. سپس حساس‌ترین رقم لوبیا (رقم ناز، به دلیل دارا بودن توجیه اقتصادی) برای ارزیابی امکان القای مقاومت با فلاونوئیدهایی نظیر کوئرستین (Quercetin) نارینجنین (Naringenin) و بررسی برخی سازوکار‌های دخیل در القای مقاومت استفاده شد. جهت بررسی تأثیر غلظت‌های مختلف (100 تا 400 میکروگرم بر میلی‌لیتر) این فلاونوئیدها در القاء مقاومت در لوبیا علیه R. solani، گیاه‏چه‏ها با غلظت‌های مختلف فلاونوئیدها تیمار شدند. گیاهان تیمارشده و شاهد با قارچ بیمارگر مایه‌زنی شدند و شاخص بیماری یک هفته بعد از مایه‌زنی محاسبه شد. نتیجه‏ها نشان دادند که غلظت‌های مختلف کوئرستین و نارینجنین در کاهش شاخص بیماری تأثیر متفاوتی داشتند. کوئرستین در غلظت‌های 200 تا 400 میکروگرم در میلی‌لیتر موجب کاهش معنی‌دار پیشرفت بیماری شد و بهترین فاصله زمانی بین تیمار و مایه‌زنی سه روز بود. غلظت‌های 100 و 200 میکروگرم بر میلی‌لیتر نارینجنین و 100 میکروگرم بر میلی‌لیتر کوئرستین باعث کاهش معنی‌دار پیشرفت بیماری نشد. ارزیابی سطوح کالوز، سوپراکسید و هیدروژن پراکسید در گیاه‏چه‌های تیمارشده با کوئرستین در زمان‌های مختلف پس از مایه‌زنی توسط R. solani نشان داد که کوئرستین با افزایش سرعت و شدت تولید این ترکیب‏های دفاعی موجب القای مقاومت در لوبیا علیه بیمارگر می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the effect of flavonoids in induction of resistance in the bean plant against crown and root rot caused by Rhizoctonia solani

نویسندگان [English]

  • Fahimeh Marvi 1
  • Parissa Taheri 2
  • Mojtaba Mamarabadi 3
1 Ph.D. Candidate, Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Associate Professor, Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 Assistant Professor, Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

In this research, pathogenicity tests were done using two different methods including inoculation of leaf discs under laboratory conditions and infecting the seedlings in the greenhouse in order to determine resistance levels of bean cultivars to Rhizoctonia solani AG4 HG-II, the causal agent of the crown and root rot. Furthermore,the most susceptible bean cultivar (cv. Naz, because of economic justification) was used to examine the possibility of inducing resistance against the pathogen, using flavonoids such as quercetin and naringenin and investigate some mechanisms involved in induced resistance. To study the effects of different concentrations of flavonoids in the induction of resistance in bean against R. solani, the seedlings were treated with 100 to 400 μg/mL concentrations of flavonoids. The treated and control plants were inoculated with the pathogen and the disease index was calculated one week following inoculation. Results showed that various concentrations of quercetin and naringenin had different effects in reducing the disease index. Quercetin at 200 to 400 μg/mL significantly decreased the progression of the disease caused by R. solani in the bean. The best time interval between treatment and inoculation was 3 days. Naringenin at 100 and 200 μg/mL and quercetin at 100 μg/mL did not significantly reduce the disease progression. Investigating callose, superoxide, and hydrogen peroxide levels at various time points after R. solani inoculationin the seedlings pretreated with quercetin revealed that quercetin-induced resistance in bean against the fungal pathogen via priming the defense components.

کلیدواژه‌ها [English]

  • Callose
  • defense mechanisms
  • Induced resistance
  • naringenin
  • quercetin
Abdel-Fattah, G. M., El-Haddad, S. A., Hafez, E. E. & Rashad, Y. M. (2011). Induction of defense responses in common bean plants by arbuscular mycorrhizal fungi. Microbiological Research, 166, 268-281.
Adám, A., Farkas, T., Somlyai, G., Hevesi, M. & Király, Z. (1989). Consequence of O2 generation during bacterially induced hypersensitive reaction in tobacco: deterioration of membrane lipids. Physiological and Molecular Plant Pathology, 34, 13-26.
Arora, Y. K. & Bajaj, K. L. (1985). Peroxidase and polyphenol oxidase associated with induced resistance of mung bean to Rhizoctonia solani Kuhn. Journal of Phytopathology, 114, 325-331.
Asselbergh, B., Curvers, K., Franca, S. C., Audenaert, K., Vuylsteke, M., Breusegem, F. V. & Hofte, M. (2007). Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiology, 144, 1863-1877.
Bahluli, A. & Farhangian Kashani, S. (2011). Evaluation of reaction of different bean cultivars to five isolates of Rhizoctonia solani in greenhouse. Journal of Plant and Biomass Research, 7, 85-97 (in Farsi)
Boubakri, H., Chong, J., Poutaraud, A., Schmitt, C., Bertsch, C., Mliki, A., Masson, J. & Soustre-Gacougnolle, I. (2013). Riboflavin (Vitamin B2) induces defence responses and resistance to Plasmopara viticola in grapevine. European Journal of Plant Pathology, 136, 837-855.
D'aes, J., Hua, G. K. H., De Maeyer, K., Pannecoucque, J., Forrez, I., Ongena, M., ... Hofte, M. (2011). Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a. Phytopahology, 101, 996-1004.
El-Mohamedy, R. S. R., Jabnoun-Khiareddine, H. & Daami-Remadi, M. (2014). Control of root rot diseases of tomato plants caused by Fusarium solani, Rhizoctonia solani and Sclerotium rolfsii using different chemical plant resistance inducers. Tunisian Journal of Plant Protection, 9, 45-55.
Finiti I, de la O Leyva M, Vicedo B, Gómez-Pastor R, López-Cruz J, García-Agustín P, Dolores Real M, & González-Bosch, C. (2014). Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress. Molecular Plant Pathology, 15, 550-562.
Foley, R. C., Kidd, B. N., Hane, J. K., Anderson, J. P. & Singh, K. B. (2016). Reactive oxygen species play a role in the infection of the necrotrophic fungi, Rhizoctonia solani in wheat. Plos One, 11, e0152548.
Galvan, M. Z., Menndez-Sevillano, M. C., De Ron, A. M., Santalla, M. & Balatti, P. A. (2006). Genetic diversity among wild common beans from northwestern Argentina based on morpho-agronomic and RAPD data. Genetic Resources and Crop Evolution, 53, 891-900.
Hamiduzzaman, M. M. & Mauch-Mani, B. (2005). β-aminobutyric acid-induced resistance in grapevine against downy mildew (Plasmopara viticola). Ph. D. thesis, University of Neuchâtel Institute of Botany, Laboratory of Biochemistry.
Jia, Z., Zou, B., Wang, X., Qiu, J., Ma, H., Gou, Z. & Dong, H. (2010). Quercetin-induced H2O2 mediates the pathogen resistance against Pseudomonas syringae pv. Tomato DC3000 in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 396, 522-527.
Khaledi, N., Taheri, P. & Falahati-Rastegar, M. (2017). Evaluation of resistance and the role of some defense responses in wheat cultivars to Fusarium head blight. Journal of Plant Protection Research, DOI: 10.1515/jppr-2017-0054.
Kortekamp, A., Wind, R. & Zvprian, E. (1997). The role of callose deposits during infection of two downy mildew-tolerant and two-susceptible Vitis cultivars. Vitis-Geil Weilerhof, 36, 103-104.
Madhuri, G. & Reddy, A. R. (1999). Plant biotechnology of flavonoids. Plant Biotechnology, 16, 179-200.
Marcucci, E., Aleandri, M. P., Chilosi, G. & Magro, P. (2010). Induced resistance by b-aminobutyric acid in artichoke against white mould caused by Sclerotinia sclerotiorum. Journal of Phytopathology, 158, 659-667.
Melillo, M. T., Leonetti, P., Leone, A., Veronico, P. & Bleve-Zacheo, T. (2011). ROS and NO production in compatible and incompatible tomato-Meloidogyne incognita interactions. Plant Pathology, 130, 489-502.
Misawa, T. & Kuninaga, S. (2010). The first report of tomato foot rot caused by Rhizoctonia solani AG-3 PT and AG-2-Nt and its host range and molecular characterization. Journal of General Plant Pathology, 76, 310-319.
Navarrete-Maya, R., Trejo-Albarrán, E., Navarrete-Maya, J., Prudencio-Sains, J. M. & Acosta Gallegos, J. A. (2009). Reaction of common bean genotypes to Fusarium spp. and Rhizoctonia solani under field and greenhouse conditions. Agricultura Técnica en México, 35, 459-470.
Nerey, Y., Pannecoucque, J., Hernandez, H. P., Diaz, M., Espinosa, R., Vos, S. D., Beneden, S. V., Herrera, L. & Hofte, M. (2010). Rhizoctonia spp. causing root and hypocotyl rot in Phaseolus vulgaris in Cuba. Journal of Phytopathology, 158, 236-243.
Nikraftar, F., Taheri, P., Falahati Rastegar, M. & Tarighi, S. (2013). Tomato partial resistance to Rhizoctonia solani involves antioxidative defense mechanisms. Physiological and Molecular Plant Pathology, 81, 74-83.
Noorbakhsh, Z. & Taheri, P. (2015). Nitric oxide: a signaling molecule which activates cell wall-associated defense of tomato against Rhizoctonia solani. European Journal of Plant Pathology, 144, 551-568.
Padmavati, M., Sakthivel, N., Thara, K. V. & Reddy, A. R. (1997). Differential sensitivity of rice pathogens to growth inhibition by flavonoids. Phytochemistry, 46, 499-502.
Pannecoucque, J. & Höfte, M. (2009). Interactions between cauliflower and Rhizoctonia anastomosis groups with different levels of aggressiveness. BMC Plant Biology, 95.
Samanta, A., Das, G. & Das, S. K. (2011). Roles of flavonoids in plants. International Journal of Pharmaceutical Science and Technology, 6, 1-3.
Schrauder, M., Moeder, W., Wiese, C., van Camp, W., Inze, D., Langebartels, C. & Sandermann, J. H. (1998). Ozone-induced oxidative burst in the ozone biomonitor plant tobacco Bel W3. Plant Journal, 16, 235-245.
Sewelam, N., Kazan, K. & Schenk, P. M. (2016). Global plant stress signaling: reactive oxygen species at the cross-road. Frontiers in Plant Science, 7, 187.
Singh, A., Rohilla, R., Singh, U. S., Savary, S., Willocquet, L. & Duveiller, E. (2002). An improved inoculation technique for sheath blight of rice caused by Rhizoctonia solani. Canadian Journal of Plant Pathology, 24, 65-68.
Steinkellner, S. & Mammerler, R. (2007). Effect of flavonoids on the development of Fusarium oxysporum f. sp. lycopersici. Journal of Plant Interactions, 2, 17-23.
Taheri, P., Gnanamanickam, S. & Hofte, M. (2007). Characterization, genetic structure, and pathogenicity of Rhizoctonia spp. associated with rice sheath diseases. Phytopathology, 97, 373-83.
Taheri, P. & Tarighi, S. (2010). Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. Journal of Plant Physiology, 167, 201-208.
Taheri, P. & Tarighi, S. (2011). A survey on basal resistance and riboflavin-induced defense responses of sugar beet against Rhizoctonia solani. Journal of Plant Physiology, 168, 1114-1122.
Taheri, P. & Tarighi, S. (2012). The role of pathogenesis-related proteins in tomato-Rhizoctonia solani interaction. Journal of Botany, 2, 1-6.
Thordal Christensen, H., Zhang, Z., Wei, Y. & Collinge, D. B. (1997). Subcellular localization of H2O2 in plant. H2O2 accumulation in papillae and hypersensitive response during the barley- powdery mildew interaction. The Plant Journal, 11, 1187-1194.
Ton, J. & Mauch-Mani, B. (2004). Beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant Journal, 38, 119-130.
Ton, J., Ent, van der Hulten, S., van Pozo, M. H. A., Oosten, M., van Loon, L. C., Mauch-Mani, B., Turlings, T. C. J. & Pieterse, C. M. J. (2009). Priming as a mechanism behind induced resistance against pathogens, insects and abiotic stress. IOBC/wprs Bulletin, 44, 3-13.
Valentin Torres, S., Vargas, M. M., Godoy-Lutz, G., Porch, T. G., Beaver, J. B. 2016. Isolates of Rhizoctonia solani can produce both web blight and root rot symptoms in common bean (Phaseolus vulgaris). Plant Disease, 100, 1351-1357.
Van der Wolf, J. M., Michta, A., Van der Zouwen, P. S., de Boer, W. J., Davelaar, E. & Stevens, L. H. (2012). Seed and leaf treatments with natural compounds to induce resistance against Peronospora parasitica in Brassica oleracea. Crop Protection, 35, 78-84.
Yang, W., Xu, X., Li, Y., Wang, Y., Li, M., Wang, Y., et al. (2016). Rutin-mediated priming of plant resistance to three bacterial pathogens initiating the early SA signal pathway. Plos One, 11, e0146910. doi:10.1371/journal.pone.0146910.
Yin, Z., Chen, J., Zeng, L., Goh, M., Leung, H., Khush, G. S. & Wang, G. L. (2000). Characterizing rice lesion mimic mutants and identifying a mutant with broad- spectrum resistance to rice blast and bacterial blight. Molecular Plant-Microbe Interaction, 13, 869-876.