تأثیر کشت نواری بادنجان با سویا در تراکم کنۀ تارتن دولکه‏ ای Tetranychus urticae ، تنوع گونه‌ای دشمنان طبیعی آن و عملکرد محصول

نوع مقاله : مقاله پژوهشی


1 دانشجوی دکتری، دانشکده کشاورزی، دانشگاه محقق اردبیلی

2 استاد، دانشکده کشاورزی، دانشگاه محقق اردبیلی

3 دانشیار، دانشگاه علوم کشاورزی و منابع طبیعی ساری


در این پژوهش تأثیر سامانه‌های تک‌کشتی بادنجان (E) و سویا (S) و سه سامانۀ کشت نواری شامل دو ردیف بادنجان با چهار ردیف سویا (2E: 4S)، دو ردیف بادنجان با دو ردیف سویا (2E: 2S) و چهار ردیف بادنجان با دو ردیف سویا (4E: 2S) روی تراکم کنۀ تارتن دولکه‏ای، Tetranychus urticae Koch، تنوع و فراوانی شکارگرهای آن و عملکرد هر دو محصول در مزرعۀ آزمایشی در قالب طرح بلوک‌های کامل تصادفی بررسی شد. در هر دو سال موردپژوهش، تراکم تخم‌ها و مراحل متحرک T. urticae روی گیاه بادنجان و سویا در هر سه سامانۀ کشت نواری در مقایسه با تک‌کشتی بادنجان و تک‌کشتی سویا به‌طور معنی‌داری کمتر بود (05/0P<). علاوه بر آن، در هر یک از سامانه‌های تک‌کشتی و کشت نواری تراکم تخم‌ها و مراحل متحرک T. urticae روی گیاه سویا به‌طور معنی‌داری بیشتر از گیاه بادنجان بود. شاخص تنوع شانون (H') برای گونه‌های شکارگر T. urticae روی گیاه بادنجان در سامانه‌های کشت نواری در مقایسه با تک‌کشتی بادنجان به‌طور معنی‌داری بیشتر بود، ولی مقدار این شاخص روی گیاه سویا در تک‌کشتی سویا و سامانۀ کشت نواری 2E: 4S بیشتر از 2E: 2S و 4E: 2S بود (05/0P<). مقادیر نسبت برابری زمین (LER) در هر یک از دو سال مورد پژوهش در سامانۀ کشت نواری 2E: 4S بالاتر از سایر سامانه‌های کشت بود؛ بنابراین، می‌توان نتیجه‌گیری کرد که سامانۀ کشت نواری 2E: 4S مناسب‌ترین سامانۀ کشت برای استفاده در برنامه‌های مدیریت تلفیقی T. urticae در مزارع بادنجان و سویا است.


عنوان مقاله [English]

Effects of strip intercropping of eggplant with soybean on densities of two-spotted spider mite Tetranychus urticae, species diversity of its natural enemies, and crop yield

نویسندگان [English]

  • Mehdi Kabiri Raeisabbad 1
  • Seyed Ali Asghar Fathi 2
  • Gadir Nouri-Ganbalani 2
  • Behnam Amiri-Besheli 3
1 Ph.D. Candidate, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran
2 Professor, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran
3 Associate Professor, Sari Agricultural Sciences and Natural Resources University, Iran
چکیده [English]

In this research, the influence of eggplant monoculture (E), soybean monoculture (S), and three intercropping systems including two rows of eggplant with four rows of soybean (2E: 4S), two rows of eggplant with two rows of soybean (2E: 2S) and four rows of eggplant with two rows of soybean (4E: 2S) were studied on population densities of Tetranychus urticae Koch, diversity and abundance of its predators, and yield of both crops in an experimental field based on a randomized block design with four blocks during two cropping seasons (2016 - 2017). In both years, the densities of T. urticae eggs and mobile forms on eggplant and soybean were significantly lower in the three intercrops compared to monoculture systems (P < 0.05). Moreover, the densities of T. urticae eggs and mobile forms were significantly higher on the soybean than the eggplant in each monoculture and intercrop system. The Shannon’s diversity indexes (H') for T. urticae predators on eggplants were significantly higher in the three intercrops compared to the monoculture. Furthermore, the values of this index were greater in soybean monoculture and 2E: 4Sintercrop than 2E: 2Sand 4E: 2S systems (P < 0.05). Values of the land equivalent ratio (LER) were higher in 2E: 4S relative to other intercrop systems in both years. Therefore, it could be concluded that 2E: 4S intercrop is the most suitable cropping system for using in integrated management of T. urticae in eggplant and soybean fields.

کلیدواژه‌ها [English]

  • Field experimental
  • Land equivalent ratio
  • predators
  • Shannon’s diversity index
  1. Allam, S. A. (2011). Utilization intercropping in the reduction of the two spotted spider mite Tetranychus urticae Koch, infesting kidney bean. Journal of Plant Protection and Pathology, 2, 645-652.
  2. Barber, A., Campbell, C. A. M., Crane, H., Lilley, R. & Tregidga, E. (2003). Biocontrol of two-spotted spider mite Tetranychus urticae on dwarf hops by the phytoseiid mites Phytoseiulus persimilis and Neoseiulus californicus. Biocontrol Science and Technology, 13, 275-284.
  3. Bei-Bienko, G. Y., Blagoveshchenskii, D. I., Chernova, O. A, Dantsing, E. M., Emilianov, A. F., Kerzhner, I. M., Loginova, M. M., Martinova, E. F., Shaposhnikov, G. K. H., Sharov, A. G., Spuris, Z. D., Yaczewski, T. L., Yakhontov, V. V. & Zhiltsoo, L. A. (1967). Keys to the insects of the European USSR. Academy of Sciences of the USSR, Zoological Institute. 1214 pp.
  4. Bickerton, M. W. & Hamilton, G. C. (2012). Effect of intercropping with flowering plants on predation of Ostrinia nubilalis (Lepidoptera: Crambidae) egg by generalist predators in bell peppers. Environmental Entomology, 41, 612-620.
  5. Bostanian, N. J., Trudeau, M. & Lasnier, J. (2003). Management of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae) in eggplant fields. Phytoprotection, 84, 1-8.
  6. Bucur, D., Jitareanu, G., Ailincai, C., Tsadilas, C., Ailincai, D. & Mercus, A. (2007). Influence of soil erosion on water, soil, humus and nutrient losses in different crop systems in the Moldavian Plateau, Romania. Journal of Food Agriculture and Environment, 5, 261-264.
  7. Cai, L., Koziel, J. & Neal, E. (2015). Studying plant–insect interactions with solid phase micro extraction: screening for airborne volatile emissions response of soybeans to the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae). Chromatography, 2, 265-276.
  8. Carrillo, D., Pena, J. E., Hoy, M. A. & Frank, J. H. (2010). Development and reproduction of Amblyseius largoensis (Acari: Phytoseiidae) feeding on pollen, Raoiella indica (Acari: Tenuipalpidae), and other micro arthropods inhabiting coconuts in Florida, USA. Experimental and Applied Acarology, 52, 119–129.
  9. Chant, D. A. & McMurtry, J. A. (2007). Illustrated keys and diagnoses for the genera and subgenera of the Phytoseiidae of the world (Acari: Mesostigmata). Indira Publishing House west Bloomfield Michigan, USA, 219 pp.
  10. De Boer, J. G. & Dicke, M. (2004). The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. Journal of Chemical Ecology, 30, 255-271.
  11. Degri, M. M. & Samaila, A. E. (2014). Impact of intercropping tomato and maize on the infestation of tomato fruit borer (Helicoverpa armigera (Hubner)). Journal of Agricultural and Crop Research, 2, 160- 164.
  12. De Souza-Pimentel, G., Reis, P., Da Silveira, E., Marafeli, P., Silva, E. & De Andrade, H. (2016). Biological control of Tetranychus urticae (Tetranychidae) on rosebushes using Neoseiulus californicus (Phytoseiidae) and agrochemical selectivity. Revista Colombiana de Entomologia, 40, 80-84.
  13. Dicke, M. & Sabelis, M. W. (1988). How plants obtain predatory mites as body guards. Netherlands Journal of Zoology, 38, 148-165.
  14. Drukker, B., Bruin, J. & Sabelis, M. W. (2000). Anthocorid predators learn to associate herbivore-induced plant volatiles with presence or absence of prey. Physiological Entomology, 25, 260- 265.
  15. Easterbrook, M. A., Fitzgerald, J. D. & Solomon, M. G. (2001). Biological control of strawberry tarsonemid mite Phytonemus pallidus and two-spotted spider mite Tetranychus urticae on strawberry in the UK using species of Neoseiulus (Amblyseius) (Acari: Phytoseiidae). Experimental andApplied Acarology, 25, 25-36.
  16. Finch, S. & Collier, R. H. (2000). Host-plant selection by insects, a theory based on ‘appropriate/inappropriate landings’ by pest insects of cruciferous plants. Entomologia Experimentalis etApplicata, 96, 91-102.
  17. Gerson, U. & Weintraub, P. G. (2007). Mites for control of pest in protected cultivation. Pest Management Science, 63, 658-676.
  18. Gorman, K., Hewitt, F., Denholm, I. & Devine, G. J. (2002). New developments in insecticide resistance in the glasshouse whitefly (Trialeurodes vaporariorum) and the two-spotted spider mite (Tetranychus urticae) in the UK. Pest Management Science, 58, 123-130.
  19. Griffiths, G. J. K., Holland, J. M., Bailey, A. & Thomas, M. B. (2008). Efficacy and economics of shelter habitats for conservation biological control. Biological Control, 45, 200-209.
  20. Hata, F., Ventura, M., Carvalho, M., Miguel, A., Souza, M., Paula, M. & Zawadneak, M. (2016). Intercropping garlic plants reduces Tetranychus urticae in strawberry crop. Experimental and Applied Acarology, 69, 311-321.
  21. Hooks, C. R. R. & Johnson, M. W. (2003). Impact of agricultural diversification on the insect community of cruciferous crops. Crop Protection, 22, 223-238.
  22. Hunady, I. & Hochman, M. (2014). Potential of legume-cereal intercropping for increasing yields and yield stability for self-sufficiency with animal fodder in organic farming. Czech Journal of Genetics and Plant Breeding, 50, 185-194.
  23. James, D. G. (2003). Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environmental Entomology, 32, 977-982.
  24. Kim, J. J., Lee, M. H., Yoon, C. & Kim, H. (2001). Control of cotton aphid and greenhouse whitefly with a fungal pathogen. Entomologica Experimenta et Applicata, 27, 1-5.
  25. Kim, M., Sim, C., Shin, D., Suh, E. & Cho, K. (2006). Residual and sublethal effects of fenpyroximate and pyridaben on the instantaneous rate of increase of Tetranychus urticae. Crop Protection, 25, 542-548.
  26. Konar, A., Singh, N. J. & Paul, R. (2010). Influence of intercropping on population dynamics of major insect pests and vectors of potato. Journal of Entomological Research, 34, 151-154.
  27. Landis, D. A., Wratten, S. D. & Gurr, G. M. (2000). Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, 45, 175-201.
  28. Letourneau, D. K., Armbrecht, I., Riversa, B. S. R., Lerma, J. M., Carmona, E. J., Daza, M. C., Escobar, S., Galindo, V., Gutierrez, C., Lopez, S. D., Mejia, J. L., Rangel, A. M. A., Rangel, J. H., Rivera, L., Saaverda, C. A., Torres, A. M. & Trujillo, A. R. (2011). Dose plant diversity benefits agroecosystem? A synthetic review. Ecological Applications, 21, 9-21.
  29. Ma, K. Z., Hao, S. G., Zhaz, H. Z. & Kang, L. (2007). Strip cropping wheat and alfalfa to improve the biological control of the wheat aphid Macrosiphum avenae by the mite Allothrombium ovatum. Agriculture Ecosystems and Environment, 119, 49-52.
  30. Magurran, A. E. (2004). Measuring biological diversity. Blackwell Publishing, USA. 256 pp.
  31. Mead, R. & Willey, R. W. (1980). The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Experimental Agriculture, 16, 217-228.
  32. Misiko, M., Tittonell, P., Ramisch, J. J., Richards, P. & Giller, K. E. (2008). Integrating new soybean varieties for soil fertility management in smallholder systems through participatory research: Lessons from western Kenya. Agricultural Systems, 97, 1-12.
  33. Ratnadass, A., Fernandes, P., Avelino, J. & Habib, R. (2012). Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agronomy for Sustainable Development, 32, 273-303.
  34. Rezayi, M., Asadi, G. A. & Hosseini, M. (2015). Marginal effects of the datura plant (Datura starmonium L.) on density of key pests of tomato (Lycopersicon esculentum Mill.). Journal of Weed Ecology, 3, 81-89. (In Farsi).
  35. Rhodes, E. M. & Liburd, E. (2006). Evaluation of predatory mites and acramite for control of two spotted spider mite in strawberries in north central Canada. Horticultural Entomology, 99, 1291-1298.
  36. Root, R. B. (1973). Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecological Monographs, 43, 94-125.
  37. Salvagiotti, F., Cassman, K. G., Specht, J. E., Walters, D. T., Weiss, A. & Dobermann, A. (2008). Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research, 108, 1-13.
  38. SAS Institute. (2005). SAS/STAT user’s guide, version 9.1. SAS Institute, Cary, NC.
  39. Satpathy, S. & Mishra, D. S. (2011). Use of intercrops and antifeedants for management of eggplant shoot and fruit borer Leucinodes orbonalis (Lepidoptera: Pyralidae). International Journal of Tropical Insect Science, 31, 52-58.
  40. Soleymannejadian, E. (2009). Alfalfa planting beside sugarcane and its effect on biodiversity and sugarcane stem borers’ damage. Journal of Plant Protection, 32, 1-13. (in Farsi)
  41. Sujayanand, G. K., Sharma, R. K, Shankarganesh, K., Saha, S. & Tomar, S. (2015). Crop diversification for sustainable insect pest management in eggplant (Solanales: Solanaceae). Florida Entomologist, 98, 305- 314.
  42. Valizadegan, O. (2015). Evaluation of insect’s fauna diversity and agronomical yield, in intercropping coriander and faba bean. Agricultural Crop Management, 17, 69-80. (In Farsi).
  43. Van den Boom, C. E. M., Van Beek, T. A. & Dicke, M. (2003). Differences among plant species in acceptance by the spider mite Tetranychus urticae Koch. Journal of Applied Entomology, 127, 177–183.
  44. Van den Boom, C. E. M., Van Beek, T. A, Posthumus, M. A., De Groot, A. & Dicke, M. (2004). Qualitative and quantitative variation among volatile profiles induced by Tetranychus urticae feeding on plants from various families. Journal of Chemical Ecology, 30, 69-89.
  45. Vet, L. E. M. & Dicke, M. (1992). Ecology of info-chemical use by natural enemies in a tritrophic context. Annual Review of Entomology, 37, 141-172.
  46. Zaho, J., Guo, X., Tan, X., Desneux, N., Zappala, L., Zhang, F. & Wang, S. (2016). Using Calendula officinalis as a floral resource to enhance aphid and thrips suppression by the flower bug Orius sauteri (Hemiptera: Anthocoridae). Pest Management Science, 73, 515-520.
  47. Zhu, J. & Park, K. C. (2005). Methyl salicylate. A soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. Journal of Chemical Ecology, 31, 1733-1746.