c3518cb17d976b8

اسانس نانوکپسوله پونه: تولید و بررسی خصوصیات فیزیکوشیمیایی آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه بوعلی‌سینا، همدان

2 گروه شیمی فیزیک، دانشکده شیمی، دانشگاه بوعلی‌سینا، همدان

چکیده

استفاده از اسانس‌های گیاهی در برنامه‌های مدیریتی آفات به عنوان جایگزین یا مکمل حشره‌کش‌های شیمیایی، ایمن و نویدبخش به نظر می‌رسد. چنین امکانی منوط به رفع نواقصی همچون ناپایداری شیمیایی، تبخیرپذیری و حلالیت کم اسانس‌های گیاهی در آب است. استفاده از نانوفرمولاسیون‌ها با امکان رهایش کنترل شده یک راه‌کار مؤثر در جهت رفع نواقص فوق به شمار می‌آید. پژوهش پیش‌رو با هدف شناسایی ترکیبات مؤثر اسانس آزاد پونهMentha longifolia و نانوفرمولاسیون آن با استفاده از روش کروماتوگرافی گازی- طیف‌سنجی جرمی و تهیه نانو سیلیکای حاوی اسانس پونه به روش سل- ژل و بررسی خصوصیات فیزیکوشیمیایی آن در جهت امکان‌‌سنجی کاربرد در برنامه‌های مدیریت تلفیقی آفات انجام شده است. نتایج نشان دهنده بیشترین فراوانی کتون‌ها (پیپریتنون 32% و پولگون 44/17%) و منوترپن‌های اکسیژن‌دار (01/24%) در بین اجزاء سازنده اسانس بود. بهترین ترکیب اجزاء و شرایط انجام واکنش نیز از نظر اندازه ذرات نانوفرمولاسیون تهیه شده و کارایی کپسوله شدن عبارت بود از تترا اتیل ارتو سیلیکات (TEOS) (5/0 میلی‌لیتر)، ستیل تری متیل آمونیوم برماید (CTAB) (08/0 گرم)، اسانس (1 ملی‌لیتر)، اتانول (13 میلی‌لیتر)، آمونیاک 25% (5/0 میلی‌لیتر)، استفاده از همزن التراسونیک به مدت 2 ساعت در دمای اتاق و در نهایت سانتریفیوژ به مدت 5 دقیقه (rpm 15000). از ویژگی‌های نانو‌سیلیکای حاوی اسانس پونه، تهیه شده با استفاده از روش سل- ژل، قطر متوسط ذرات 80-66 نانومتر، پتانسیل زتای37-، شاخص پراکندگی 2/0 و راندمان ریزپوشانی 64/79 درصد بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Mentha longifolia nanoencapsulated essential oil: Its synthesis and physico-chemical properties

نویسندگان [English]

  • Maryam Malekmohammadi 1
  • Moein Jaafaripoorderagahi 1
  • AmirAbbas Rafati 2
1 Department of Plant Protection, Faculty of Agriculture, Bu- Ali Sina University, Hamedan, Iran
2 Department of Physical Chemistry, Faculty of Chemistry, Bu- Ali Sina University, Hamedan, Iran
چکیده [English]

Essential oils app;ication in integrated pest management as alternative or complementary to chemical insecticides appears quite safe and promosing. However the chemical instability, volatility and poor water solubility remain the main disadvantages of essential oils and must be resolved before being incorporated into pest management systems. Incorporation of essential oils into a controlled-release nanoformulation is an efficient approach to overcome these limitations. So the present study aimed to analyze chemical constituents of Mentha longifolia free and nanoencapsulated essential oils by gas chromatography–mass spectrometry (GC–MS) and describe a practical approach to synthesize nano hollow silica spheres by sol-gel method as a Mentha longifolia essential oil carrier. GC–MS analysis resulted in the detection of the 43 components, piperitenone (%32), piperitenone oxide (%24.01) and pulegone (%17.44) were the three most representative constituents. The success of M. longifolia essential oil encapsulated was characterized based on some parameters including particle size, zeta potential, polydispersity index (PDI) and encapsulation efficiency. The Optimised Reaction mixture consisting of TEOS (0.5 ml), CTAB (0.08 g), essential oil (1 ml), ethanol (13 ml), 25% ammonia (0.5 ml), 2 hours of ultrasonication at room temperature and emulsification at 15000 rpm for 5 min, resulted in particle size between 66 to 80 nm, a polydispersity index of 0.2, zeta pontencial of −37 mV and an EE of 79.64%.

کلیدواژه‌ها [English]

  • Essential oil
  • mint
  • Encapsulation
  • Sol- Gel
  1. Ahsaei, S. M., Talebi-Jahromi, Kh. & Amoabediny, G. (2020) Insecticidal activity of polycaprolactone nanoparticles decorated with chitosan containing two essential oils against Tribolium confusum, International Journal of Pest Management, 66, 1-9.
      1. Amzouar, S., Boughdad, A., Maatoui, A. & Allam, L. (2016). Comparison of the chemical composition and the insecticidal activity of essential oils of Mentha suaveolens Ehrh collected from two different regions of Morocco, against Bruchus rufimanus (Bohman) (Coleoptera: Chrysomelidae). International Journal of Innovation and Applied Studies, 18, 836–845.
      2. Anjali, C. H., Khan, S. S., Margulis-Goshen, K., Magdassi, S., Mukherjee, A. & Chandrasekaran, N. (2010). Formulation of water-dispersible nanopermethrin for larvicida applications. Ecotoxicology and Environmental Safety, 73, 1932–1936.
      3. Ansari, M. A., Vasudevan, P., Tandon, M. & Razdan, R. K. (2000). Larvicidal and mosquito repellent action of peppermint (Mentha piperita) oil. Bioresource Technology, 71, 267-271.
      4. Aouadi, G., Haouel, S., Soltani, A., Ben Abada, M., Boushih, E., Elkahoui, S., Taibi, F., Mediouni Ben Jemaa, J. & Bennadja, S. (2020). Screening for insecticidal efficacy of two Algerian essential oils with special concern to their impact on biological parameters of Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae). Journal of Plant Diseases and Protection, 127, 471–482.
      5. Ayil-Gutiérrez, B. A., Villegas-Mendoza, J. M., Santes-Hernández, Z., Paz-González, A. D., Mireles-Martínez, M., Rosas-García, N. M. & Rivera, G. (2015). Ruta graveolens extracts and metabolites against Spodoptera frugiperda. Natural Product Communications, 10, 1955–1958.
      6. Badawy, M. E.,Taktak, N. E., Awad, O. M., Elfiki, S. A., El-Ela, N. E. A. (2015). Larvicidal activity of temephos released from new chitosan/alginate/gelatincapsules against Culex pipiens. International Journal of Mosquito Research, 2, 45–55.
      7. Bahadori, M. B., Zengin, G., Bahadori, S., Dinparast, L. & Movahhedin, N. (2018). Phenolic composition and functional properties of wildmint (Mentha longifolia var. calliantha. International Journal of Food Properties, 21, 198–208.
      8. Baik, M. Y., Suhendro, E.L. ., Nawar, W. W., McClements, D.J. ., Decker, E. A. & Chinachoti, P. (2004).
        1. Effects of antioxidants and humidity on the oxidative stability of microencapsulated fish oil, J. Am. Oil Chem. Soc, 81, 355–360.
      9. Boukhebti, H., Chaker, A. N., Belhadj, H., Sahli, F., Ramdhani, M., Laouer, H. & Harzallah, D. (2011). Chemical composition and antibacterial activity of Mentha pulegium L. and Mentha spicata L. essential oils. Der Pharmacia Lettre, 3, 267–275.
      10. Carvalho, S.S., Vendramim, J. D., Sa, I. C. G., Silva, M. F.G. F., Ribeiro, L. P., Forim, M. R. (2015). Efeito inseticida sistámico de nanoformulaeces obase de nim sobre Bemisia tabaci (Hemiptera: Aleyrodidae) biatipo B em tomateiro. Bragantia, 74, 298–306.
      11. Chaaban, S. B., Hamdi, S. H., Mahjoubi, K. & Jemaa, J. M. B. (2019). Composition and insecticidal activity of essential oil from Ruta graveolens, Mentha pulegium and Ocimum basilicum against Ectomyelois ceratoniae Zeller and Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Plant Diseases and Protection, 126, 237–246.
      12. Chang, Y., Lee, S. H., Na, J. H., Chang, P. S. & Han, J. (2017) Protection of grain products from Sitophilus oryzae (L.) contamination by anti-insect pest repellent sacher containing allyl mercaptan microcapsule. Journal of Food Science, 82, 2634–2642.
      13. Christofoli, M., Costa, E. C. C., Bicalho, K. U., de Cassia Domingues, V., Peixoto, M. F., Alves, C. C. F., Araujo, W. L. & de Melo Cazal, C. (2015). Insecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations. Industrial Crops and Products, 70, 301–308.
      14. Costa, R. G., Faria, L. J. G., Gusmao, S. A. L., Silva, J. K. R., Andrade, E. H. A. & Maia, J. G. S. (2014). Essential oil of Pataqueira (Conobea Scoparioides Benth.): from natural occurrence and produced by hydroponics. Advances in Plants and Agriculture Research, 1, 1–5.
      15. Dias, D. O., Colombo, M., Kelmann, R. G., Kaiser, S., Lucca, L. G., Teixeira, H. F., Limberger, R. P., Veiga-Jr, V. F. & Koester, L. S. (2014). Optimization of Copaibaoil-based nanoemulsions obtained by different preparation methods. Industrial Crops and Products, 59, 154–162.
      16. Donsì, F., Annunziata, M., Sessa, M. & Ferrari, G. (2011). Nanoencapsulation ofessential oils to enhance their antimicrobial activity in foods. Food Science and Technology, 44, 1908–1914.
      17. Ebadollahi, S. (2013). Essential oils isolated from Myrtaceae family as natural insecticides. Annual Review and Research in Biology, 3, 148–175.
      18. Fan, W., Yan, W., Xu, Z. & Ni, H. (2012). Formation mechanism of monodisperse, lowmolecular weight chitosan nanoparticles by ionic gelation technique. Colloids and Surfaces B, 90, 21–27.
      19. Flores, F. C., Ribeiro, R. F., Ourique, A. F., Rolim, C. M. B., Silva, C. B., Pohlmann, A. R., Beck, C. R. & Guterres, S. S. (2011). Nanostructured systems containing an essentialoil: protection against volatilization. Química Nova, 34, 968–972.
      20. Galvao, J. G., Silva, V. F., Ferreira, S. G., Franca, F. R. M., Santos, D. A., Freitas, L. S., Alves, P. B., Araújo, A. A. S., Cavalcanti, S. C. H. & Nunes, R. S. (2015). β-cyclodextrin inclusion complexes containing Citrus sinensis (L.) Osbeck essential oil: an alternative to control Aedes aegypti larvae. Thermochimica Acta, 608, 14–19.
      21. González, J. O. W., Gutiérrez, M. M., Ferrero, A. A. & Band, B. F. (2014). Essential oils nanoformulations
      22. for stored-product pest control –characterization and biological properties. Chemosphere, 100, 130-138.
      23. Hasani, D. J., Elhami Rad, A. H., Hosseini, M. M. & Shahidi Noghabi, M. (2015). Physicochemical characteristic of microencapsulated fish oil by freeze-drying using different combinations of wall materials, Biosci. Biotech. Res. Asia., 12, 45–51
      24. He, C., Hu, Y., Yin, L., Tang, C. & Yin, C. (2010). Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 31, 3657–3666.
      25. Hosseini, S. F., Zandi, M., Rezaei, M., Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydrate Polymer, 95, 50-61.
      26. Honary, S. & Zahir, F. (2013). Effect of zeta potential on the properties of nano-drug delivery systems − a review (Part 2). Tropical Journal of Pharmaceutical Research, 12, 265–273.
      27. Hough-Goldstein, J. A. (1990). Antifeedant effects of common herbs on the Colorado potato beetle (Coleoptera: Chrysomelidae). Environmental Entomology, l19, 234–238.
      28. Huang, X., Teng, X., Chen, D., Tang, F. & He, J. (2010). The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials, 31, 438–448.
      29. Ikawati, S., Himawan, T., Abadi, A. L., & Tarno, H. (2020). Toxicity nanoinsecticide based on clove essential oil against Tribolium castaneum(Herbst). Journal of Pesticide Science, 20, 1-7.
      30. Isman, M. B. (2020). Botanical Insecticides in the Twenty-First Century-Fulfilling Their Promise? Annual Review of Entomology, 65, 233-249.
      31. Javed, B., Nadhman, A. & Mashwani, Z. U. R. (2020). Phytosynthesis of Agnanoparticles from Mentha longifolia: their structural evaluationand therapeutic potential against HCT116 colon cancer, Leishmanial and bacterial cells. Applied Nanoscience, 10, 3503–3515.
      32. Kaparthi, R. & Chari, K. S. (1959). Solubilities of vegetable oils in aqueous ethanol and ethanol-hexane mixtures. Journal of the American Oil Chemists' Society, 36, 77–80.
      33. Kashyap, P. L., Xiang, X. & Heiden, P. (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules, 77, 36–51.
      34. Kasrati, A., Aloui Jamali, C., Bekkouche, K., Spooner-Heart, R., Leach, D. & Abbad, A. (2015). Chemical characterization and insecticidal properties of essential oils from different wild population of Mentha suaveolens subsp, timija (Briq.) Harley from Morocco. Chemistry & Biodiversity, 12, 823–831.
      35. Keawchaoon, L. & Yoksan, R. (2011). Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids and Surfaces B, 84,163–171
      36. Khanuja, S. P. S., Kumar, S., Shasany, A. K., Dhawan, S., Darokar, M. P., Tripathy, A. K., Satapathy, S., Santha Kumar, T. R., Gupta, V. K., Tripathi, A. K., Awasthi, S., Prajapati, V., Naqvi, A. A., Agrawal, K. K., Bahal, J. R., Singh, A. K., Ahmed, A., Bansal, R. P., Krishna, A. & Saikia, D. (2001). Multiutility plant “Ganga” of Mentha spicata var. viridis. Journal of Medicinal and Aromatic Plant Sciences, 23, 113-116.
      37. Klinkesorn, U., Sophanodora, P., Chinachoti, P., Decker, E.A. & McClements, D.J. (2006) Characterization of spray-dried tuna oil emulsified in two-layered interfacial membranes prepared using electrostatic layer-by-layer deposition, Food Res. Int. 39, 449–457.
      38. Krishna. R.S., Shivakumar, H.G., Gowda, D.V. &Banerjee, S. (2006). Nanoparticles: A novel colloidal drug delivery. system. Indian J Pharm Educ Res., 40, 15–21.
      39. Kumar, P., Mishra, S., Malik, A. & Satya, S. (2014). Preparation and characterization of PEG-Mentha oil nanoparticles for housefly control. Colloids and Surfaces B, 116, 707–713.
      40. Liu, F., Wen, L. X., Li, Z. Z., Yu, W., Sun, H. Y. & Chen J. F. (2006). Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Materials Research Bulletin, 41, 2268-2275.
      41. Lucia, A. & Guzman, E. (2021). Emulsions containing essential oils, their components or volatile semiochemicals as promising tools for insect pest and pathogen management, Advances in Colloid and Interface Science, 287, 102330.
      42. Maji, T. K., Baruah, I., Dube, S. & Hussain, M. R. (2007). Microencapsulation of Zanthoxylum limonella oil in glutaraldehyde crosslinked gelatin for mosquito repellent application. Bioresource Technology, 98, 840–844.
      43. Marchese, A., Orhan, I. E., Daglia, M., Barbieri, R., Lorenzo, A. D., Nabavi, S. F., Gortzi, O., Izadi, M. & Nabavi, S. M. (2016). Antibacterial and antifungal activities of thymol: a brief review of the literature. Food Chemistry, 210, 402–414.
      44. Mendes, R. G., Koch, B., Bachmatiuk, A., El-Gendy, A. A., Krupskaya, Y., Springer, A., Klingeler, R., Schmidt, O., Buchner, B., Sanchez, S. & Rummeli, M. H. (2014). Synthesis and toxicity characterization of carbon coated iron oxide nanoparticles with highly defined size distributions. Biochimica et Biophysica Acta, 1840, 160–169.
      45. Menossi, M., Ollier, R.P., Casalongué, C.A. and Alvarez, V.A. (2021). Essential oil-loaded bio-nanomaterials for sustainable agricultural applications. Journal of Chemical Technology & Biotechnology, 96, 2109-2122.
      46. Montefuscoli, A. R., González, J. O. W., Palma, S. D., Ferrero, A. A. & Band, B. F. (2014). Design and development of aqueous nanoformulations for mosquito control. Journal of Parasitology Research, 113, 793–800.
      47. Najafi, M., Yousefi, Y. & Rafati, A. A. (2012). Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel, Separation and Purification Technology, 85, 193-205.
      48. Natrajan, D., Srinivasan, S., Sundar, K. & Ravindran, A. (2015). Formulation of essential oilloaded chitosan ealginate nanocapsules. Journal of Food and Drug Analysis, 23, 560–568.
      49. Niksic, H., Kovac-Besovic, E., Duric, K., Korac, N., Omeragic, E. & Muratovic, S. (2014). Seasonal variation in content and chemical composition of essential oils from leaves of Mentha longifolia Huds. (Lamiaceae). Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 43, 29–34.
      50. Nuruzzaman, Md., Rahman, M. M., Liu, Y.,  Naidu, R. (2016). Nanoencapsulation, Nano-Guard for esticides: A New Window for Safe Application. Journal of Agricultural and Food Chemistry, 64, 1447-83.
      51. Oliveira, A. P., Santana, A. S., Santana, E. D. R., Lima, A. P. S., Faro, R. R. N., Nunes, R. S., Limab, A. D., Blanka, A. F., Araujoc, A. P. A., Cristaldoa, P. F. & Baccia, L. (2017). Nanoformulation prototype of the essential oil of Lippia sidoides and thymol to population management of Sitophilus zeamais (Coleoptera: Curculionidae). Industrial Crops and Products, 107, 198–205.
      52. Pagliaro, M. (2009) Silica-Based Materials for Advanced Chemical Applications, RSC Publishing, Cambridge.
      53. Pavela, R. (2008) Insecticidal properties of several essential oils on the house fly (Musca domestica L.). Phytotherapy Research, 22, 274–278.
    • Pinto, N., Rodrigues, T. S., Pereira, R. C., Silva, L. M., Cáceres, C. A., Azeredo, H. M., Muniz, C. R., Brito, E. S. & Canuto, K. (2016). Production and physico-chemical characterization of nanocapsules of the essential oil from Lippia sidoides Cham. Industrial Crops and Products, 86, 279-288.
    1. Politi, F. A., Nascimento, J. D., da Silva, A. A., Moro, I. J., Garcia, M. L., Guido, R. V., Pietro, R. C., Godinho, A. F. & Furlan, M. (2017). Insecticidal activity of an essential oil of Tagetes patula L. (Asteraceae) on common bed bug Cimex lectularius L. and molecular docking of major compounds at the catalytic site of ClAChE1. Parasitology Research, 116, 415–424.
    2. Quan, M., Liu, Q. & Liu, Z. (2018) Identification of insecticidal constituents from the essential oil from the aerial parts Stachys riederi var. japonica. Molecules 23, 1–12.
    3. Ragaei, M. & Sabry, A. K. (2014) Nanotechnology for insect pest control. International journal of science, environment and technology, 3, 528–545.
    4. Rajendran, S. & Sriranjini, V. (2008). Plant products as fumigants for stored-product insect control. Journal of Stored Products Research, 44, 126–135.
    5. Riahi, L., Elferchichi, M., Ghazghazi, H., Jebali, J., Aouadhi, C., Chogran, H., Zaouali. Y., Zoghlami, N. & Mliki, A. (2013). Phytochemistry, antioxidant and antimicrobial activities of the essential oils of Mentha rotundifolia L. in Tunisia. Industrial Crops and Products, 49, 883–889.
    6. Sangha, J. S., Astatkie, T. & Cutler, G. C. (2017). Ovicidal, larvicidal and behavioural effects of some plant essential oils on diamondback moth (Lepidoptera: Plutellidae). Entomological Society of Canada, 149, 639–648.
    7. Sharma, M., Mann, B., Sharma, R., Bajaj, R., Athira, S., Sarkar, P., Pothuraju, R. (2017). Sodium caseinate stabilized clove oil nanoemulsion: Physicochemical properties. Journal of Food Engineering, 212, 38-46.
    8. Sousa, P., Linard, C., Azevedo Batista, D., Oliveira, A. C., Coelho de Souza, A. & Leal Cardoso, J. (2009). Antinociceptive effects of the essential oil of Mentha x villosa leaf and its major constituent piperitenone oxide in mice. Brazilian Journal of Medical and Biological Research, 42, 655–659.
    9. Stoehr, L. C., Gonzalez, E., Stampfl, A., Casals, E., Duschl, A., Puntes, V. & Oostingh, G. J. (2011). Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Particle and Fibre Toxicology, 8, 1–15.
    10. Surassmo, S., Min, S. G., Bejrapha, P. & Choi, M. J. (2010). Effects of surfactants on thephysical properties of capsicum oleoresin-loaded nanocapsules formulated through the emulsion-diffusion method. Food Research International, 43, 8–17.
    11. Thompson, D. A., Lehmler, H. J., Kolpin, D.W., Hladik, M. L., Vargo, J. D., Schilling, K. E., LeFevre, G. H., Peeples, T. L., Poch, M. C., LaDuca, L. E., Cwiertny, D. M. & Field, R. W. (2020). A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health. Environmental Science: Processes & Impacts, 22, 1315–1346.
    12. Tripathi, A. K., Prajapati, V., Ahmad, A., Aggarwal, K. K. & Khanuja, S. P. S. (2004). Piperitenone oxide as toxic, repellent, and reproduction retardant toward malarial vector Anopheles stephensi (Diptera: Anophelinae). Journal of Medical Entomology, 41, 691-698.

    68. Wen, L.X., Li, Z. Z., Zou, H. K., Liu, A.Q. & Chen, J. F. (2005). Controlled release of avermectin from porous hollow silica nanoparticles. Pest Management Science, 61, 583–590.

    1. Werdin Gonzalez, J. O., Gutierrez, M. M., Ferrero, A. A. & Fernandez Band, B. (2014). Essential oils nanoformulations for stored-product pest control - characterization and biological properties. Chemosphere, 100, 130–138.
    2. Werdin Gonzalez, J. O., Jesser, E. N., Yeguerman, C. A., Ferrero, A. A. & Fernandez Band, B. (2017). Polymer nanoparticles containing essential oils: new options for mosquito control. Environmental Science and Pollution Research, 24, 17006–17015.
    3. Werdin Gonzalez, J. O., Stefanazzi, N., Murray, A. P., Ferrero, A. A. & Fernández Band, B. (2015). Novel nanopesticides based on essential oils to control the German cockroach. Journal of Pest Science, 88, 393–404.
    4. Woranuch, S. & Yoksan, R. (2013). Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation. Carbohydrate Polymers, 96, 578–585.
    5. Xu, H., Song, T., Bao, X. Q. & Hu, L. L. (2005). Site-directed research of magnetic
      nanoparticles in magnetic drug targeting. Journal of Magnetism and Magnetic Materials,
      293, 514–519.
    6. Yang, F. L., Li, X. G., Zhu, F. & Lei, C. L. (2009). Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Agricultural and Food Chemistry, 57, 10156–62.
    7. Yari, M., Masoudi, S. & Rustaiyan, A. (2000). Essential oil of Haplophyllum tuberculatum (Forssk.) A. Juss. grown wild in Iran. Journal of Essential Oil Research, 12, 69–70.