نوع مقاله : مقاله پژوهشی


1 دانشجوی دکتری حشره‌شناسی، گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه

2 دانشیار گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

3 . استاد گروه صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه

4 استاد گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه

5 دانشیار بخش کنترول بیولوژیک، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران گیاهپزشکی کشور

6 استادیار بخش تحقیقات گیاهپزشکی، سازمان تحقیقات کشاورزی و منابع طبیعی استان آذربایجان غربی، ارومیه


در پژوهش حاضر بیمارگری اسپور و کریستال باکتری (HD-1) Bacillus thuringiensis subsp. kurstaki تولیدشده در انواع محیط کشت در شرایط تخمیری و غیر‌تخمیری روی سن دوم لاروی Ephestia kuehniella L. بررسی شد. تعداد کلنی‌، تعداد اسپور، ضریب شکست نوری (OD) و وزن خشک سلولی در محیط کشت غنی‌شده و غنی‌نشده در شرایط تخمیری پس از 96 ساعت کشت به‌ترتیب (1014‌×2/28 CFU برمیلی‌لیتر،‌1010×‌8/11اسپوربرمیلی‌لیتر، 108‌×‌0/28‌میلی‌گرم-برمیلی‌لیتر، 0/11گرم‌برلیتر) و (1014‌×6/26 CFU برمیلی‌لیتر،‌1010×‌0/10 اسپور‌بر‌میلی‌لیتر، 108‌×‌4/24 میلی‌گرم‌برمیلی‌لیتر، 9/9 گرم‌برلیتر) و در شرایط تخمیر‌نشده (1014‌×1/18CFU بر‌میلی‌لیتر،1010×‌1/8 اسپوربر‌میلی‌لیتر، 108‌×‌4/16 میلی‌گرم‌بر میلی‌لیتر، 9/8 گرم‌برلیتر) و (1014‌×8/16CFU‌ بر‌میلی‌لیتر،‌1010×‌4/7 اسپوربرمیلی‌لیتر، 108‌×‌6/15‌میلی‌گرم‌برمیلی‌لیتر، 9/7 گرم‌برلیتر) به دست آمد. شاخص‌LC‌50 سوسپانسیون اسپور و کریستال رشد کرده در محیط کشت غنی‌شده و غنی‌نشده در شرایط تخمیر‌شده در مدت 96 ساعت کشت، پس از دو روز تیمار لاروها (9/0 و 0/3) و در شرایط تخمیر‌نشده (5/1 و 2/4) میکروگرم‌برمیلی‌لیتر و شاخصLT50 در شرایط تخمیر‌شده (2/6 و 7/10) و در شرایط تخمیر‌نشده (2/7 و 6/12) ساعت برآورد شد. بررسی‌های زیست‌سنجی میزان مرگ‌ومیر حاصل از سوسپانسون رشد کرده در محیط کشت غنی‌شده و غنی‌نشده در شرایط تخمیر‌شده پس از 96 ساعت کشت، پس از دو روز تیمار لاروها به ترتیب (0/61 و 6/46) و در در شرایط تخمیر‌نشده (3/53 و 6/38) درصد نشان داد. نتایج نشان داد محیط کشت غنی‌شده در شرایط تخمیر‌شده سبب تولید بیشترین میزان اسپور و کریستال و در نتیجه افزایش زهرآگینی باکتری روی لارو سن دوم پروانه E. kuehniellaشد.


عنوان مقاله [English]

Improvement the media culture for spore/crystal production of Bacillus thuringiensis subsp. kurstaki and evaluate their virulence against second larval instar of Ephestia kuehniella L.

نویسندگان [English]

  • Elmira Mokhtarnejhad 1
  • Shahram Aramideh 2
  • Mahmood Rezazad Bari 3
  • Mohammad Hassan Safaralizadeh 4
  • Mohammad Reza Rezapanah 5
  • Maryam Forouzan 6

1 PhD Student of Entomology, Faculty of Agriculture, Urmia University, Urmia

2 Associate Professor of Plant Protection Department, Faculty of Agriculture, Urmia University, Urmia, Iran

3 Professor of Food Science Department, Faculty of Agriculture, Urmia University, Urmia

4 Professor of Plant Protection Department, Faculty of Agriculture, Urmia University, Urmia

5 Associate Professor of Department of Biological Control, Iranian Research Institute of Plant Protection, Agriculture Research Education and Extension Organization, Tehran

6 Plant Protection Research Department. West Azarbaijan, Agriculture and Natural Resources Research Center, AREEO, Urmia

چکیده [English]

In the present study, the pathogenicity of spores/crystals produced byBacillus thuringiensis subsp. kurstaki (HD-1) in different culture media within fermented and non fermented conditions were determined against the second larval instar of Ephestia kuehniella L. The colony forming unit (CFU), spore count, optical density (OD) and cell mass indices in enriched and non-enriched liquid media of fermented condition after 96 h cultivation were (28.2‌×‌1014 CFU.mL‌-1, 11.8‌×‌1010 spore.mL‌-1, 28.0‌×‌108 mg.mL-1 and 11.0 g.L-1) and (26.6‌×‌1014 CFU.mL‌-1, 10.0‌×‌1010 spore.mL‌-1, 24.4‌×‌108 mg.mL-1 and 9.9 g.L-1), respectively while those were found to be (18.1‌×‌1014 CFU.mL‌-1, 8.1‌×‌1010 spore.mL‌-1, 16.4‌×‌108 mg.mL-1 and 8.9 g.L-1) and (16.8‌×‌1014 CFU.mL‌-1, 7.4 ×‌1010 spore.mL -1, 15.6‌×‌108 mg.mL-1 and 7.9 g.L-1) in non-fermented condition, respectively. The LC50 value of Btk spore/crystal cultured on enriched and non-enriched liquid media for 96h cultivation in fermented condition after 2 days treatment against larval instar were obtained (0.9 and 3.0) and in non-fermented condition (1.5 and 4.2) µg.mL-1, respectively.The LT50 value in fermented condition (6.2 and 10.7) and in non-fermented condition (7.2 and 12.6) h were, respectively. Bioassay studies indicated that the Btk spore/crystal suspention cultured on enriched and non-enriched media in fermented condition for 96h cultivation after 2 days treatment had (61.0 and 46.6-%) and in non-fermented condition (53.3 and 38.6%) mortality, respectively. The results confirm that enriched culture medium in fermented conditions produced the highest amount of spores and crystals and thus increased bacterial toxicity on the second larval instar of E. kuehniella after treatment.

کلیدواژه‌ها [English]

  • Bacillus thuringiensis subsp. kurstaki
  • Ephestia kuehniella
  • Fermented condition
  • Enriched medium
  1. Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265- 267.

2.     Aharonowitz, Y. & Demain, A. L. (1980). Thoughts on secondary metabolism. Biotechnology and Bioengineering, 22, 5- 9.

3.     Amin, G., Alotaibi, S., Youssef Narmen, A. & Saleh, W. D. (2008). Optimization of a fermentation process for bioinsecticide production by Bacillus thuringiensis. World Journal of Microbiology and Biotechnology, 24(11), 2465- 2471.

  1. Aneja, K. R. (2007). Experimentsin Microbiology, Plant Pathology and Biotechnology. 632 pages.
  2. Bel, Y., Granedo, F., Alberola, T. M., Martinez-Sebastian, M. J. & Ferre, J. (1997). Distribution, frequency and diversity of Bacillus thuringiensis in olive tree environments in Spain. Systematic of Applied Microbiology, 20, 652- 658.
  3. Ben Khedher, S., Kamoun, A., Jaoua, S. & Zouari, N. (2011). Improvement of Bacillus thuringiensis bioinsecticide production by sporeless and sporulating strains using response surface methodology.New Biotechnology, 28(6), 705–712.
  4. Brindley, T. A. (1930). The growth and development of Ephestia kuehniella Zeller (Lepidoptera) and Tribolium confusum Duval (Coleoptera) under controlled conditions of temperature and relative humidity. Annals of the Entomological Society of America, 23, 741–757.
  5. Burges, H. D. & Jones, K. A. (1998). Formulation of bacteria, viruses and protozoa to control insects. In: Formulation of microbial biopesticides. Vol., ed. Eds. Springer, 33-127. Devidas, P. C., Pandit, B. H. & Vitthalrao, P. S. (2014). Evaluation of different culture media for improvement in bio insecticides production by indigenous Bacillus thuringiensis and their application against larvae of Aedes aegypti. The Scientific World Journal. Article ID 273030, 6 pages.
  6. Dominguez-Arrizabalaga, M., Villanueva, M., Beatriz Fernandez, A. & Caballero, P. (2019). A strain of Bacillus thuringiensis containing a novel cry7Aa2 gene that is toxic to Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Insects,10(9), 259.
  7. Dulmage, H. T. (1970). Production of the spore-γ-endotoxin complex by variants of Bacillus thuringiensis in two fermentation media. Invertebrate Pathology,16(3), 385-389.
  8. El-Kersh, T. A., Al-akeel, R. A., Al-sheikh, Y. A. & Alharbi, S. A. (2014). Isolation and distribution of mosquito-larvicidal Cry genes in Bacillus thuringiensis strains native to Saudi Arabia. Tropical Biomedicine, 31, 616-32.
  9. El-Kersh, T. A., Al-Sheikh, Y. A., Al-Akeel, R. A. & Alsayed, A. A. (2012). Isolation and characterization of native Bacillus thuringiensis isolates from Saudi Arabia. African Journal of Biotechnology, 11(8),1924-38.
  10. Enegide, C., David, A. & Fidelis, S. A. (2013). A new method for determining acute toxicity in animal models. Toxicology International, 20(3), 224-
  11. Federici, B. (2007). Bacteria as biological control agents for insects: economics, engineering and environmental safety. In Vurro M, Gressel J (ed.), Novel biotechnologies for biocontrol agent enhancement and management, Springer, Dordrecht, The Netherlands, 25–51.
  12. Finney, D. N. (1971). Probit Analysis, 3rd edition, London: Cambridge University Press. Pharmaceutical Sciences, p. 318.
  13. Foda, M. S., Ismail, I. M. K., Moharam, M. E. & Sadek, Kh. H. A. (2002). A novel approach for production of Bacillus thuringiensis by solid state fermentation. Egyptian Journal of Microbiology, 37(2), 135-155.
  14. Ghribi, D., Zouari, N., Trigui, W. & Jaoua, S. (2007). Use of sea water as salts source in starch and soya bean-based media, for the production of Bacillus thuringiensis Process Biochemistry, 42, 374-378.
  15. Gobatto, V., Giani, S.G., Camassola, M., Dillon, A. J. P., Specht, A. & Barros, N. M. (2010). Bacillus thuringiensis isolates entomopathogenic for Culex quinquefasciatus (Diptera: Culicidae) and Anticarsia gemmatalis (Lepidoptera: Noctuidae). Brazilian Journal of Biology, 70, 1039-1046.
  16. Goettel, M. S., Jahnson, D. L. & Inglis G. D. (1955). The role of fungi the biological control of grasshoppers. Canadian Journal of Botany,73 (1), 1-75.
  17. Gupta, S. & Dikshit, A. K. (2010). Biopesticides: an ecofriendly approach for pest control. Biopesticides, 3(1), 186-188.
  18. Haung, Y., Tan, J. M. W. L., Kini, R. M. & Ho, S. H. (1997). Toxic and antifeedant action of numeg oil against Tribolium castaneum (Herbdt) and Sitophilus zeamais Stored Product Research, 33, 289- 298.
  19. Ibrahim, M. A., Griko, N., Junker, M. & Bulla, L. A. (2010). Bacillus thuringiensis: a genomics and proteomics perspective. Bioengineered Bugs, 1, 31–50.
  20. Joung, K. B. . & Horticultural, R. (2000). A review of the environmental impacts of the microbial insecticide Bacillus thuringiensis, , Agriculture and Agri-food Canada, Research Branch.
  21. Keshavarzi, M., Salimi, H. & Mirzanamadi, F. (2005). Biochemical and physical requirements of Bacillus thuringiensis kurstaki For high biomass yield production. Agricultural Science and Technology, 7, 41-47.
  22. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685.
  23. Liu, B. & Tzeng, Y. M. (2000). Characterization study of the sporulation kinetics of Bacillus thuringiensis. Biotechnology and Bioengineering, 68 (1), 11-17.
  24. Mazmira, M. M., Ramlah, S. A. A., Rosfarizan, M. , Ling, T. C. & Ariff, A. B. (2012). Effect of saccharides on growth, sporulation rate and endotoxin synthesis of Bacillus thuringiensis. African Journal of Biotechnology, 11(40), 9654-9663.
  25. Mostafaie, A. (2003). Theoretical and practical guide Protein Electrophoresis in Gel. Press yadavaran.
  26. Perumalsamy, H., Kim, N. J. & Ahn, Y. J. (2009). Larvicidal activity of compounds isolated from Asarum heterotropoides against Culex pipienspallens, Aedes aegypti, and Ochlerotatus togoi (Diptera: Culicidae). Medical Entomology, 46(6), 1420- 1423.
  27. Poopathi, S. & Abidha, S. (2008). Biodegradation of poultry waste for the production of mosquitocidal toxins. International Journal of Biodeterioration and Biodegradation, 62(4), 479-
  28. Poopathi, S. & Archana, B. (2012). Optimization of medium composition for the production of mosquitocidal toxins from Bacillus thuringiensisisraelensisIndian Journal of Experimental Biology, 50 (1), 65-71. 
  29. Pourmirza, A. A. (2005). Local variation in susceptibility of Colorado potato beetle (Coleoptera: Chrysomelidae) to insecticide. Journal of Economic Entomology, 98(6), 2176-2180.
  30. Ramirez-Lepe, M. & Ramirez-Suero, M. (2012). Biological control of mosquito larvae by Bacillus thuringiensisisraelensis, Insecticides Pest Engineering, chapter 11, In Tech Press.
  31. Roh, J. Y., Choi, J. Y., Li, M. S., Jin, B. R. . & Je, Y. H. (2007). Bacillus thuringiensis as a specific, safe, and efective tool for insect pest control. Microbiology and Biotechnology, 17, 547.
  32. Rojas, N. L., Lewkowicz, E. S. & Nobile, M. L. (2018). Alternative low-cost process for large-scale production of Bacillus thuringiensis in a simple and novel culture system. Environmental Science and Health, Part B; 53(11), 719-728.
  33. Sanahuja, G., Banakar, R., Twyman, R. M., Capell, T. & Christou, P. (2011). Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnology, 9, 283–300.
  34. Sarker, N. & Mahbub, K. R. (2012). Bacillus thuringiensis: An Environment Friendly Microbial Control Agent. Microbiology, 2, 36-51.
  35. Sarrafzadeh, M. H., Guiraud, J. P., Lagneau, C., Gaven, B., Carron, A. & Navarro, J. M. (2005). Growth, sporulation, delta- endotoxins synthesis, and toxicity during culture of thuringiensis H-14. Current Microbiology, 51(2), 75-81.
  36. Schunemann, R., Knaak, N. & Fiuza, L. M. (2014). Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. ISRN Microbiology, 1-12.
  37. Seyedi, H., Mehrkhou, F & Noori, F. (2017). Type of ceneralflours as factors affecting biological and physiological characteristics of Ephestia kuehniella (Lepidoptera: Pyralidae) larvae. Crop Protection, 6(2), 273-285.
  38. Shapiro, S. S. & Wilk, M. B. (1965). An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52(3/4), 591-611.
  39. Soccol, C. R., Pollom, T. E. V., Fendrich, R. C., Prochmann, F.A., Mohan, R., Blaskowski, M. M. M., Melo, A. L., de Carvalho, C. J. B. & Thomaz-Soccol, V. (2009). Development of a low cost bioprocess for endotoxin production by Bacillus thuringiensis israelensis intended for biological control of Aedes aegypti. Brazilian Archives of Biology and Technology, 52, 121-130.
  40. Tirado-Montiel, M. L., Tyagi, R. D. & Valero, J. R. (2001).Waste water treatment sludge as a raw material for the production of Bacillus thuringiensis based biopesticides. Water Research, New York, 35(16), 3807-
  41. Travers, R. S., Martin, P. A. W. & Reichelderfer, C. F. (1987). Selective process for efficient isolation of soil Bacillus Applied and Enviromental Microbiology, 53(6),1263-1266.
  42. (2011). Laboratory Guide book MLG 3.01. Quantitative Analysis of Bacteria in Foods as Sanitary Indicators.
  43. Valicente, F. H. & Moura, A. H. C. (2008). Use of by-products rich in carbon and nitrogen as a nutrient source Bacillus thuringiensis (Berliner)-based biopesticide. Neotropical Entomology, 37, 702-708.
  44. Valicente, F. H., Tuelher, E., Leite, M. I. S., Freire, F. L. & Vieira, C. M. (2010). Production of Bacillus thuringiensis biopesticide using commercial lab medium and agricultural by-products as nutrient sources. Revista Brasileira de Milho e Sorgo, 9 (1), 1-
  45. Van Frankenhuyzen, K. (2009). Insecticidal activity of Bacillus thuringiensis crystal proteins. Invertebrate Pathology, 101, 1-16.
  46. (1985). Informal consultation on the development of Bacillus sphaericus as a microbial larvicide. TDR/BVC/ Sphaericus, 85, 3(1).
  47. Yang, X. M. & Wang, S. S. (1998). Development of Bacillus thuringiensis fermentation and process control from a practical perspective. Biotechnology and Applied Biochemistry, 28(2), 95-
  48. Zouari, N., Achour, O. & Jaoua, S. (2002). Production of delta-endotoxin by Bacillus thuringiensis kurstaki and over coming of catabolite repression by using highly concentrated gruel and fish meal media in 2- and 20-dm 3 fermenters. Chemical Technology and Biotechnology, 77, 877-882.