c3518cb17d976b8

اثر دود و حرارت بر رکود و جوانه‌زنی بذر علف‌هرز کنجدشیطانی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

چکیده

دمای بالا و دود حاصل از آتش زدن بقایای گیاهی بر رفتار بذر علف‌های هرز در بانک بذر خاک موثر است. ازاین‌رو، این تحقیق با هدف بررسی اثر دود حاصل از سوختن بقایای کلزا  بر رکود و جوانه‌زنی بذر کنجد شیطانی انجام شد. این آزمایش روی بذر تازه و پس رس شده به مدت 6 ماه[1] انجام شد. در آزمایش اول، جوانه‌زنی بذرهای تازه و شش ماه پس رس شده در دماهای 15، 20، 25، 30، 35 و 40 درجه سلسیوس در شرایط نور و تاریکی بررسی شد. در آزمایش دوم، بذرهای کنجد شیطانی به مدت 5 و 10 دقیقه در دماهای 80، 100، 120 و 150 درجه سلسیوس پیش تیمار شدند و در ادامه، جوانه‌زنی آن‌ها در دمای 30 درجه سلسیوس بررسی گردید. در آزمایش سوم، اثر دود بر جوانه‌زنی بذرهای تازه و پس رس شده به سه روش عصاره دودی، دودآب و ذرات دودی مورد بررسی قرار گرفت. بذرهای تازه کنجد شیطانی در هیچ‌ دمایی جوانه نزدند، اما جوانه‌زنی بذرهای پس رس شده در دمای 30 درجه سلسیوس، 92 درصد بود. پیش تیمار بذرهای پس رس شده با دماهای 100، 120 و 150 درجه سلسیوس سبب توقف کامل جوانه‌زنی شد. هر سه نوع تیمار دودی اثرات مثبتی بر رکود و جوانه‌زنی بذر کنجدشیطانی داشتند. ترتیب اثرات مثبت تیمارهای دودی، به‌صورت ذرات دودی > دودآب > عصاره دودی بود.
 
[1]. در این تیمار بذرها بعد از برداشت به مدت 6 ماه در دمای اتاق (20 درجه سلسیوس) نگهداری شدند و سپس در آزمایشات مختلف به‌کار رفتند..

کلیدواژه‌ها


عنوان مقاله [English]

Effect of smoke and heat on dormancy and germination of Asian spiderflower seeds

نویسندگان [English]

  • Asieh Siahmarguee
  • Farshid Ghaderifar
  • S. Hamid Reza Bagheri
Department of Agronomy, Faculty of Crop Production, Gorgan University of Agricultural Sciences and Natural Resources. Gorgan. Iran.
چکیده [English]

High temperatures and smoke resulting from the burning plant residues impact the behavior of weed seeds in the soil seed bank. Therefore, this research was conducted to investigate the effect of smoke from burning rapeseed residues on the dormancy and germination of Asian spider flower seeds. The study examined both fresh seeds and those that had been stored for 6 months.
 In the first experiment, fresh and stored seed germination was examined at temperatures ranging from 15 to 40 oC in light and dark conditions.  The second experiment involved pre-treating Asian spider flower seeds at 80, 100, 120, and 150 oC temperatures for 5 and 10 minutes. In the third experiment, the effect of smoke on the germination of fresh and after-ripened seeds was studied using charred solution, smoke water, and aerosol smoke. The fresh seeds of the Asian spider flower did not germinate at any temperature, but the germination of after-ripened seeds at 30 oC was 92%. Pre-treatment of ripened seeds with temperatures of 100, 120, and 150 °C caused complete inhibition of germination. All smoke treatments had positive effects on seed germination of Asian spider flowers. The positive effects of smoke treatments are in the following order: aerosol smoke>smoke water> charred solution.

کلیدواژه‌ها [English]

  • dormancy
  • fire
  • germination
  • seed bank
  • smoke
  • weed seeds

Extended Abstract

Introduction

    A suitable strategy for weed management is to target the weed seed bank in the soil by encouraging seed germination and reducing the number of weed seeds in the soil seed bank. Research showed that high temperatures and smoke from burning plant residues (which is done to facilitate bed preparation operations) affect the behavior of weed seeds in the soil seed bank. As a result, this research was conducted to investigate the effect of smoke from the burning of rapeseed residues on the dormancy and germination of Asian spider flower seeds.

 

 

Material and Methods

     This study was conducted on fresh and 6-month after-ripened seeds. In the first experiment, the germination of fresh and after-ripened seeds was examined at temperatures ranging from 15 to 40 oC under light and dark conditions. In the second experiment, Asian spider flower seeds were pre-treated for 5 and 10 minutes at high temperatures of 80, 100, 120, and 150 oC and then the seeds were germinated at the temperature of 30 °C. In the third experiment, the effect of smoke on the germination of fresh and after-ripened seeds was studied using charred solution, smoke water, and aerosol smoke.

 

Results

     The highest percentage of germination of this plant was observed at the temperature of 30°C and all temperatures, the percentage of germination was higher in light conditions (12.12 hours) than in darkness. The fresh seeds of the Asian spider flower did not germinate at any temperature, but the germination of after-ripened seeds at 30 oC was 92%. The seed germination of this weed was higher in light than in darkness. Pre-treatment with high temperatures did not affect the germination of freshly harvested Asian spider flower seeds. Pre-treatment of ripened seeds with temperatures of 100, 120, and 150 °C caused complete inhibition of germination, and the germination percentage was 84-87% only in the seeds that were pretreated at 80°C temperature. Freshly harvested Asian spider flower seeds did not germinate under different treatments of charred solution, smoke water, and aerosol smoke. At a temperature of 30 °C, different concentrations of charred solution and smoke water did not affect the germination of this weed; but different trends were seen in other temperatures. The use of different concentrations of charred solution increased the germination rate compared to the control. In imbibed seeds, the germination percentage of this weed was similar in different treatments (including the time of exposure to aerosol smoke and washing or not washing the seeds).  However, in dry seeds, the germination percentage and rate in the non-washing treatment were higher than in the washing treatment. Also, in dry seeds, the germination percentage increased with increasing exposure time to aerosol smoke.

 

Conclusion

     Studies have shown that the seeds of different species of Cleome have a non-deep physiological dormancy. The application of various treatments, including after-ripening for 6 to 12 months at a temperature of 20 to 30 °C, is effective in improving the germination of these plants. Studying the survival of ungerminated seeds in pre-treatment conditions with high temperatures showed that all seeds were alive. This indicates that the high temperatures caused by the fire cause the induction of dormancy in the Asian spiderflower seeds. The results of the present study showed all smoke treatments had positive effects on seed germination of Asian spider flowers. The positive effects of smoke treatments are in the following order: aerosol smoke>smoke water> charred solution. In light and dark conditions at a temperature of 30 °C (optimum temperature for germination of this weed), different concentrations of > charred solution and smoke water did not affect the germination behavior of this plant; However, at temperatures lower and higher than the optimal temperature, the maximum seed germination of this weed was affected by light and darkness and the concentration of smoke extract. Thus, the use of smoke treatments can partially replace the role of light in seed germination. Considering that the weed seed bank is made up of newly dropped seeds by the mother plant and seeds produced in previous years, it seems that the smoke resulting from the burning of plant residues can improve the germination conditions in older seeds and this order will empty the seed bank of this weed in the soil.

اعظمی، جابر و پورهاشم‌زهی، سمیه. (1397). آثار آتش‏های عمدی بخش کشاورزی بر محیط زیست (مطالعه موردی:استان اصفهان). انسان و محیط زیست. 16(3)، 124-113.
اکبرزاده، علی.، قربانی دشتکی، شجاع.، نادری خوراسگانی، مهدی.، محمدی، جهانگرد و تقی زاده مهرجردی، روح‌الله. (1396). تأثیر آتش سوزی بر آب گریزی و مقدار و عوامل فرسایش خاک در جنگل‌های سواحل جنوب غربی دریای خزر. مجلۀ جنگل ایران، انجمن جنگلبانی ایران. 9(1)، 157-145.
اکبری گلوردی، آ. (1396). بررسی اثر برخی عوامل محیطی بر جوانه‏زنی و سبزشدن بذور کنجدشیطانی (Cleome Viscosa L.). پایان نامه کارشناسی ارشد رشته اگروتکنولوژی- علوم علف های هرز. دانشگاه علوم کشاورزی و منابع طبیعی گرگان. گرگان.
امامی کنگر، دورسن.، سیاهمرگویی، آسیه.، کامکار، بهنام و بصیری، محبوبه. (1397). بررسی قابلیت رقابت سویا در شرایط تداخل با تراکم‌های مختلف کنجد ‌شیطانی (Cleome viscosa L.): علف هرز مهاجم در استان گلستان. پژوهشهای حفاظت گیاهان ایران، 32(4)، 592-579. https://doi/10.22067/JPP.V32I4.68919
توشیح، وفا. و سدری، محمدحسین. (1390). معایب و مضرات سوزاندن کاه و کلش (نشریه ترویجی). مدیریت هماهنگی ترویج کشاورزی کردستان. 21.
زرداری، ساناز.، قادری فر، فرشید.، صادقی پور، حمیدرضا.، زینلی، ابراهیم.، و سلطانی، الیاس. (1398). اثرات تیمارهای دودی بر جوانه زنی بذرهای استراتیفیکاسیون شده گیاه دارویی- مرتعی کما (Ferula ovina Boiss). مجله فیزیولوژی محیطی گیاهی، 14(55)، 94-79.
زکی، الناز.، عابدی، مهدی. (1396). بررسی پاسخ جوانه‌زنی سه گونه گندمی چندساله Stipa caucasica،  Festuca valesiaca و Poa densa  به تیمارهای دود و حرارت. مجله مرتع. (4)10، 482-474.
زکی، الناز.، عابدی، مهدی.، نقی نژاد، علیرضا و عرفانزاده، رضا. (1396). پاسخ جوانه‌زنی بذرهای گروه‌های مختلف کارکردی به تیمارهای دود مایع وگازی. مجله پژوهشهای گیاهی، 30(4)، 872-862.
زینتی، لادن.، سیاهمرگوئی، آسیه.، قادری فر، فرشید.، یونس آبادی، معصومه و چائوهان باقیراس، سینگ. (1402). ارزیابی اثر دماهای بالا و عمق دفن بر سرنوشت بذر گونه‌های مختلف علف‌هرز تاج خروس (Amaranthus sp.). پژوهش‌های بذر ایران، ۱۰ (۱) :۱۱۱-۹۱.   https://doi/ 10.61186/yujs.10.1.91
شایان‌فر، علی. (1396). مطالعه تنوع ژنتیکی رکود ثانویه و پایداری بانک بذر کلزا. رساله دکتری رشته علوم و تکنولوژی بذر . دانشگاه علوم کشاورزی و منابع طبیعی گرگان. گرگان.
ماهش کا، آپادیایا و رابرت ای، بلک شاو (1390). مدیریت غیرشیمیایی علف‌های هرز (اصول، مفاهیم و فناوری). ترجمه مین باشی معینی، مهدی.، زند، اسکندر و میقانی، فریبا. انتشارات جهاد دانشگاهی مشهد.
منعمی‌زاده، زهرا. (1401). بررسی رکود و جوانه‌زنی اکوتیپ‌های مختلف ماریتیغال (Silybum marianum (L.) Gaertn). رساله دکتری رشته اگروتکنولوژی- فیزیولوژی گیاهان زراعی . دانشگاه علوم کشاورزی و منابع طبیعی گرگان. گرگان.
 
REFERENCES
Aazami, J., & Pourhashemzehi, S. (2018). The effect of arson in agriculture on the environment (case study: Esfahan province). Human & Environment, 16(3), 113–124. (In Persian).
Abedi, M., Zaki, E., Erfanzadeh, R., Naqinezhad, A. (2017). Germination patterns of the scrublands in response to smoke: The role of functional groups and the effect of smoke treatment method. South African Journal of Botany, 115, 231-236. https://doi.org/10.1016/j.sajb.2017.03.010.
Adkins, S. W., & Peters, N. C. B. (2001). Smoke derived from burnt vegetation stimulates germination of arable weeds. Seed Science Research, 11(3), 213–222. https://doi.org/10.1079/SSR200177
Akbari-Gelvardi, A. (2017). The effect of some environmental factors on seed germination and emergence of Cleome viscosa L. Msc Thesis of Agrotecnology- Weed Science. Gorgan University of Agricultural Sciences and Natural Resources.
Akbari‐Gelvardi, A., Siahmarguee, A., Ghaderi‐Far, F., & Gherekhloo, J. (2021). The effect of environmental and management factors on seed germination and seedling emergence of Asian spiderflower (Cleome viscosa L.). Weed Research, 61(5), 350–359. https://doi.org/10.1111/wre.12493
Akbarzadeh, A., Dashtaki, S. G., Khorasgani, M. N., Mohammadi, J., & Mehrjardi, R. T. (2017). Effect of fire on water repellency, amount and factors of soil erosion in forests of southwest coast of the Caspian Sea. Iranian Journal of Forest, 9(1). https://doi/full/10.5555/20173303426. (In Persion).
Baskin, C. C., Baskin, J. M., & Cheplick, G. P. (1998). Ecology of seed dormancy and germination in grasses. Population Biology of Grasses, 28, 30–83.
Baxter, B. J. M., & Van Staden, J. (1994). Plant-derived smoke: an effective seed pre-treatment. Plant Growth Regulation, 14, 279–282. https://doi.org/10.1007/BF00024804
Benech-Arnold, R. L., Sánchez, R. A., Forcella, F., Kruk, B. C., & Ghersa, C. M. (2000). Environmental control of dormancy in weed seed banks in soil. Field Crops Research, 67(2), 105–122. https://doi.org/10.1016/S0378-4290(00)00087-3
Boguzas, V., Marcinkeviciene, A., & Kairyte, A. (2004). Quantitative and qualitative evaluation of weed seed bank in organic farming. Agronomy Research, 2(1), 13–22.
Brown, N. A. C., Van Staden, J., Daws, M. I., & Johnson, T. (2003). Patterns in the seed germination response to smoke in plants from the Cape Floristic Region, South Africa. South African Journal of Botany, 69(4), 514–525. https://doi.org/10.1016/S0254-6299(15)30289-1
Carrington, M. E. (2010). Effects of soil temperature during fire on seed survival in Florida Sand Pine Scrub. International Journal of Forestry Research, 2010. https://doi.org/10.1155/2010/402346
Çatav, Ş. S., Küçükakyüz, K., Akbaş, K., & Tavşanoğlu, Ç. (2014). Smoke-enhanced seed germination in Mediterranean Lamiaceae. Seed Science Research, 24(3), 257–264. https://doi.org/10.1017/S0960258514000142
Chiwocha, S. D. S., Dixon, K. W., Flematti, G. R., Ghisalberti, E. L., Merritt, D. J., Nelson, D. C., Riseborough, J.-A. M., Smith, S. M., & Stevens, J. C. (2009). Karrikins: a new family of plant growth regulators in smoke. Plant Science, 177(4), 252–256. https://doi.org/10.1016/j.plantsci.2009.06.007
Chumpookam, J., Lin, H.-L., & Shiesh, C.-C. (2012). Effect of smoke-water on seed germination and seedling growth of papaya (Carica papaya cv. Tainung No. 2). HortScience, 47(6), 741–744. https://doi.org/10.21273/HORTSCI.47.6.741
Downes, K. S., Lamont, B. B., Light, M. E., & Van Staden, J. (2010). The fire ephemeral Tersonia cyathiflora (Gyrostemonaceae) germinates in response to smoke but not the butenolide 3-methyl-2 H-furo [2, 3-c] pyran-2-one. Annals of Botany, 106(2), 381–384. https://doi.org/10.1093/aob/mcq118
Drewes, F. E., Smith, M. T., & Van Staden, J. (1995). The effect of a plant-derived smoke extract on the germination of light-sensitive lettuce seed. Plant Growth Regulation, 16, 205–209. https://doi.org/10.1007/BF00029542
Dyer, W. E. (1995). Exploiting weed seed dormancy and germination requirements through agronomic practices. Weed Science, 43(3), 498–503. https://doi.org/10.1017/S0043174500081534
Egerton-Warburton, L. M. (1998). A smoke-induced alteration of the sub-testa cuticle in seeds of the post-fire recruiter, Emmenanthe penduliflora Benth. (Hydrophyllaceae). Journal of Experimental Botany, 49(325), 1317–1327. https://doi.org/10.1093/jxb/49.325.1317
Ekpong, B. (2009). Effects of seed maturity, seed storage and pre-germination treatments on seed germination of cleome (Cleome gynandra L.). Scientia Horticulturae, 119(3), 236–240. https://doi.org/10.1016/j.scienta.2008.08.003
Emami-Kangar, D., Siahmarguee, A., Kamkar, B., & Basiri, M. (2019). Study of soybean competitive ability under interference conditions with different densities of Asian spider flower (Cleome viscosa L.): invasive weed in Golestan province. Journal of Plant Protection (Mashhad), 32(4), 579-592. https://10.5555/20203431030. (In Persion).
Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., & Trengove, R. D. (2009). Identification of alkyl substituted 2 H-furo [2, 3-c] pyran-2-ones as germination stimulants present in smoke. Journal of Agricultural and Food Chemistry, 57(20), 9475–9480. https://doi.org/10.1021/jf9028128
Flematti, G. R., Merritt, D. J., Piggott, M. J., Trengove, R. D., & Smith, S. M. (2011). Burning vegetation produces cyanohydrins that liberate cyanide and promote seed germination. Nature Communication, 2, 360. https://doi.org/ 10.1038/ncomms1356
Ghebrehiwot, H. M., Kulkarni, M. G., Kirkman, K. P., & Van Staden, J. (2012). Smoke and heat: influence on seedling emergence from the germinable soil seed bank of mesic grassland in South Africa. Plant Growth Regulation, 66, 119–127. https://doi.org/10.1007/s10725-011-9635-5
Gupta, S., Plačková, L., Kulkarni, M. G., Doležal, K., & Van Staden, J. (2019). Role of smoke stimulatory and inhibitory biomolecules in phytochrome-regulated seed germination of Lactuca sativa. Plant Physiology, 181(2), 458–470. https://doi.org/10.1104/pp.19.00575
Gerivani, Z., Vashaee, E., Sadeghipour, H. R., Aghdasi, M., Shobbar, Z. S., & Azimmohseni, M. (2016). Short versus long term effects of cyanide on sugar metabolism and transport in dormant walnut kernels. Plant Science, 252, 193–204. https://doi.org/10.1016/j.plantsci.2016.07.016
Kamotho, N. G. (2004). Effects of management practices, maturity stages, drying, packaging and storage conditions on seed quality of Cleome gynandra LM Phil. Thesis Moi University.
Keeley, J. E., & Fotheringham, C. J. (1998). Smoke‐induced seed germination in California chaparral. Ecology, 79(7), 2320–2336. https://doi.org/10.1890/0012-9658(1998)079[2320:SISGIC]2.0.CO;2
Keeley, J. E., & Pausas, J. G. (2018). Evolution of ‘smoke’induced seed germination in pyroendemic plants. South African Journal of Botany, 115, 251–255. https://doi.org/10.1016/j.sajb.2016.07.012
Kępczyński, J., Białecka, B., Light, M. E., & van Staden, J. (2006). Regulation of Avena fatua seed germination by smoke solutions, gibberellin A 3 and ethylene. Plant Growth Regulation, 49, 9–16. https://doi.org/10.1007/s10725-006-0008-4.
Kulkarni, M. G., Sparg, S. G., Light, M. E., & Van Staden, J. (2006). Stimulation of rice (Oryza sativa L.) seedling vigour by smoke‐water and butenolide. Journal of Agronomy and Crop Science, 192(5), 395–398. https://doi.org/10.1111/j.1439-037X.2006.00213.x.
Light, M. E., Gardner, M. J., Jager, A. K., & Van Staden, J. (2002). Dual regulation of seed germination by smoke solutions. Plant Growth Regulation, 37, 135–141. https://doi.org/10.1023/A:1020536711989
Long, R. L., Stevens, J. C., Griffiths, E. M., Adamek, M., Gorecki, M. J., Powles, S. B., & Merritt, D. J. (2011). Seeds of Brassicaceae weeds have an inherent or inducible response to the germination stimulant karrikinolide. Annals of Botany, 108(5), 933–944. https://doi.org/10.1093/aob/mcr198
Melander, B., Rasmussen, I. A., & Bàrberi, P. (2005). Integrating physical and cultural methods of weed control—examples from European research. Weed Science, 53(3), 369–381. https://doi.org/10.1614/WS-04-136R.
Merritt, D. J., Kristiansen, M., Flematti, G. R., Turner, S. R., Ghisalberti, E. L., & Trengove, R. D. (2006). Effects of a butenolide present in smoke on light-mediated germination of Australian Asteraceae. Seed Science Research, 16, 29–35. https://doi.org/10.1079/SSR2005232
Minbashi, M., Zand, A., & Mighani, F. (2011). Non-chemical management of weeds (principles, concepts and technology). Publications University of Mashhad. (In Persion).
Monemizadeh, Z. (2022). Investigation of seed dormancy and germination of different ecotypes of Silybum marianum (Asteraceae). PhD Thesis in Agrotechnology- Crops Phyisology. Gorgan University of Agricultural Sciences and Natural Resources. (In Persion).
Moreira, B., Tormo, J., Estrelles, E., & Pausas, J. (2010). Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Annals of Botany, 105(4), 627–635. https://doi.org/10.1093/aob/mcq017
Muasya, R. M., Simiyu, J. N., Muui, C. W., Rao, N. K., Dulloo, M. E., & Gohole, L. S. (2009). Overcoming seed dormancy in Cleome gynandra L. to improve germination. Seed Technology, 134–143.
Nelson, D. C., Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., & Smith, S. M. (2012). Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology, 63, 107–130. https://doi.org/10.1146/annurev-arplant-042811-105545.
Nelson, D. C., Flematti, G. R., Riseborough, J. A., Ghisalberti, E. L., Dixon, K. W., & Smith, S. M. (2010).  Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 107, 7095–7100. https://doi.org/10.1073/pnas.0911635107
Ochudho AT, J. O. & M. (2005). Temperature and light requirements for the germination of Cleome gynandra seeds. South African Journal of Plant and Soil, 22(1), 49–54. https://10.10520/AJA02571862_539.
Rahnama-Ghahfarokhi, A., & Tavakkol-Afshari, R. (2007). Methods for dormancy breaking and germination of galbanum seeds (Ferula gummosa). Asian Journal of Plant Sciences, 6(4), 611–616. https://10.3923/ajps.2007.611. 616.
Read, T. R., Bellairs, S. M., Mulligan, D. R., & Lamb, D. (2000). Smoke and heat effects on soil seed bank germination for the re-establishment of a native forest community in New South Wales. Austral Ecology, 25(1), 48-57. https://doi.org/10.1046/j.1442-9993.2000.01031.x
Siegień, I., & Bogatek, R. (2006). Cyanide action in plants from toxic to regulatory. Acta Physiologiae Plantarum, 28(5), 483-497. https://doi.org/10.1007/BF02706632
Shayanfar, A. (2017). Studying the genetic diversity of the secondary dormancy and the stability of the rapeseed seed bank. PhD Thesis in Seed Science and Thecnology. Gorgan University of Agricultural Sciences and Natural Resources. (In Persion).
Shilla, O., Abukutsa-Onyango, M. O., Dinssa, F. F., & Winkelmann, T. (2016). Seed dormancy, viability and germination of Cleome gynandra (L.) Birq: A review. African Journal of Horticultural Science, AVRDC Staff Publication.
Soltani, A., Galeshi, S., Zeinali, E., & Latifi, N. (2002). Germination, seed reserve utilization and seedling growth of chickpea as affected by salinity and seed size. Seed Science and Technology, 30, 51-60.
Soós, V., Sebestyén, E., Juhász, A., Light, M. E., Kohout, L., Szalai, G., Tandori, J., Van Staden, J., & Balázs, E. (2010). Transcriptome analysis of germinating maize kernels exposed to smoke-water and the active compound KAR1. BMC Plant Biology, 10(1), 1–16. https://doi.org/10.1186/1471-2229-10-236
Sparg, S. G., Kulkarni, M. G., & Van Staden, J. (2006). Aerosol smoke and smoke‐water stimulation of seedling vigor of a commercial maize cultivar. Crop Science, 46(3), 1336–1340. https://doi.org/10.2135/cropsci2005.07-0324
Thomas, P. B., Morris, E. C., & Auld, T. D. (2007). Response surfaces for the combined effects of heat shock and smoke on germination of 16 species forming soil seed banks in south‐east Australia. Austral Ecology, 32(6), 605–616. https://doi/abs/10.1111/j.1442-9993.2007.01730.x
Toshih, V., & and Sedri, M.H. (2011). Disadvantages of burning straw and stubble (promotional publication). Coordination management of Kurdistan agriculture promotion. 21 p. (In Persion).
Van Staden, J., Brown, N. A. C., Jäger, A. K., & Johnson, T. A. (2000). Smoke as a germination cue. Plant Species Biology, 15(2), 167–178. https://doi.org/10.1046/j.1442-1984.2000.00037.x
Van Staden, J., Jäger, A. K., Light, M. E., & Burger, B. V. (2004). Isolation of the major germination cue from plant-derived smoke. South African Journal of Botany, 70(4), 654–659. https://doi.org/10.1016/S0254-6299(15)30206-4
Weller, S., Florentine, S., Javaid, M. M., Welgama, A., Chadha, A., Chauhan, B. S., & Turville, C. (2021). Amaranthus retroflexus L. (redroot pigweed): Effects of elevated CO2 and soil moisture on growth and biomass and the effect of radiant heat on seed germination. Agronomy, 11(4), 728. https://doi.org/10.3390/agronomy11040728
Zaki, E., Abedi, M., Naqinezhad, A., & Erfanzadeh, R. (2017). Seed Germination Responses of Different Functional Groups to Aerosol smoke and Smoke water Treatments. Journal of Plant Researches, 30(4), 803–814. (In Persion).
Zaki, E., & Abedi, M. (2017). Effects of smoke and heat treatments on germination of Stipa caucasica, Festuca valesiaca and Poa densa. Journal of Rangeland, 10(4), 474-482. (In Persion).
Zardari, S., Ghaderi-far, F., Sadeghipour, H. R., Zeinali, E., & Soltani, E. (2019). Impacts of smoke treatments on germination of cold-stratified seeds in medicinal-rangeland plant Ferula ovina Boiss. (Apiaceae). Journal of Iranian Plant Ecophysiological Research, 14(55), 79–94. (In Persion).
Zinati, L., Siahmarguee, A., Ghaderi-Far, F., Yones-Abadi, M., & Singh Chauhan, B. (2023). Evaluating the effect of high temperatures and burial depth on seed fate of different species of Amaranthus weed. Journal of Seed Research, 10(1), 91–111. https://doi.org/10.61186/yujs.10.1.91.  (In Persion).